1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
5

A uniform rod of mass 3.30×10−2 kg and length 0.450 m rotates in a horizontal plane about a fixed axis through its center and pe

rpendicular to the rod. Two small rings, each with mass 0.200 kg , are mounted so that they can slide along the rod. They are initially held by catches at positions a distance 5.20×10−2 m on each side from the center of the rod, and the system is rotating at an angular velocity 35.0 rev/min . Without otherwise changing the system, the catches are released, and the rings slide outward along the rod and fly off at the ends.
(a) What is the angular speed of the system at the instant when the rings reach the ends of the rod?

(b) What is the angular speed of the rod after the rings leave it?
Physics
1 answer:
Alex73 [517]3 years ago
7 0

(a) 2.75 rev/min

The moment of inertia of the rod rotating about its center is:

I_R=\frac{1}{12}ML^2

where

M=3.30\cdot 10^{-2} kg is its mass

L = 0.450 m is its length

Substituting,

I_R=\frac{1}{12}(3.30\cdot 10^{-2})(0.450)^2=5.57\cdot 10^{-4} kg m^2

The moment of inertia of the two rings at the beginning is

I_r = 2mr^2

where

m = 0.200 kg is the mass of each ring

r=5.20\cdot 10^{-2} m is their distance from the center of the rod

Substituting,

I_r=2(0.200)(5.20\cdot 10^{-2})^2=1.08\cdot 10^{-3} kg m^2

So the total moment of inertia at the beginning is

I_1=I_R+I_r = 5.57\cdot 10^{-4}+1.08\cdot 10^{-3}=1.64\cdot 10^{-3}kg m^2

The initial angular velocity of the system is

\omega_1 = 35.0 rev/min

The angular momentum must be conserved, so we can write:

L=I_1 \omega_1 = I_2 \omega_2 (1)

where I_2 is the moment of inertia when the rings reach the end of the rod; in this case, the distance of the ring from the center is

r=\frac{0.450 m}{2}=0.225 m

so the moment of inertia of the rings is

I_r=2(0.200)(0.225)^2=0.0203 kg m^2

and the total moment of inertia is

I_2 = I_R + I_r =5.57\cdot 10^{-4} + 0.0203 = 0.0209 kg m^2

Substituting into (1), we find the final angular speed:

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(1.64\cdot 10^{-3})(35.0)}{0.0209}=2.75 rev/min

(b) 103.0 rev/min

When the rings leave the rod, the total moment of inertia is just equal to the moment of inertia of the rod, so:

I_2 = I_R = 5.57\cdot 10^{-4}kg m^2

So using again equation of conservation of the angular momentum:

L=I_1 \omega_1 = I_2 \omega_2

We find the new final angular speed:

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(1.64\cdot 10^{-3})(35.0)}{5.57\cdot 10^{-4}}=103.0 rev/min

You might be interested in
The pivot point of a ____ is called the fulcrum.
Alexxx [7]
Hello:

The pivot point of a LEVER is called the fulcrum.
8 0
3 years ago
How long does it take the statue to reach the ground ?
Marrrta [24]
The Statue of Liberty?
8 0
3 years ago
Why does it take double the applied force to move a mass double the size?
Ratling [72]
56-999999999999999999999-4 is the best for my mom
5 0
3 years ago
Alice and Bob are each riding horses on a carousel. Alice's horse is twice as far from the axis of spin of the carousel as Bob's
FromTheMoon [43]

Answer:

option (a)

Explanation:

the angular velocity of the carousel is same througout the motion, so the angular velocity of all the horses is same, but the linear velocity is different for different horses.

As the angular displacement of all the horses are same in the same time so the angular velocity is same.

The relation between the linear velocity and the angular velocity is given by

v = r ω

where, v is linear velocity and r be the distance between the horse and axis of rotation and ω be the angular velocity.

So, the angular velocity of Alice horse is same as the angular velocity of Bob horse.

ωA = ωB

Thus, option (a) is true.

8 0
3 years ago
I NEEDHELP ASAP !!! BEIN TIMED AND I HAVE 5 MINS LEFT AND 8 LEFT TO ANSWER !
inn [45]

i think its a, good luck on your test

3 0
3 years ago
Other questions:
  • A very massive object A and a less massive object B move toward each other under the influence of gravity. Which force, if eithe
    12·1 answer
  • The site from which an airplane takes off is the origin. The X axis points east, the y axis points straight up. The position and
    11·1 answer
  • A private aviation helicopter's main rotor blades rotate at approximately
    12·1 answer
  • Which expression can be used to calculate centripetal acceleration?
    10·1 answer
  • According to the first law of thermodynamics, what could happen when heat is added to a system?
    13·2 answers
  • Please help I’ll give brainliest
    15·1 answer
  • Give an example of a vertical motion with a positive velocity and a negative acceleration. Give an example of a vertical motion
    11·1 answer
  • What is a magnet?<br>just the basic definition ​
    14·2 answers
  • A jet of water squirts out horizontally from
    15·2 answers
  • Which type of communications equipment functions as a radio receiver and searches across several frequencies?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!