Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
Answer:
54.6°
Explanation:
From law of reflection i=r.
So, construct the reflected ray at 55.7°degrees from the normal and let it fall on the other mirror.
Now draw the second normal at the point of incidence and again measure the angle of incidence, and draw the angle of reflection.
If you consider triangle AOB, one angle is ∠AOB=90°
and ∠OAB is 54.6°
From angle sum property third angle ie ∠ABO=180°-90°-54.6°=35.4°
So, the second incident angle will be 54.6°
Hence, the second reflected angle will be 54.6 degrees.
Answer:
markers are 29.76 m far apart in the laboratory
Explanation:
Given the data in the question;
speed of particle = 0.624c
lifetime = 159 ns = 1.59 × 10⁻⁷ s
we know that; c is speed of light which is equal to 3 × 10⁸ m/s
we know that
distance = vt
or s = ut
so we substitute
distance = 0.624c × 1.59 × 10⁻⁷ s
distance = 0.624(3 × 10⁸ m/s) × 1.59 × 10⁻⁷ s
distance = 1.872 × 10⁸ m/s × 1.59 × 10⁻⁷ s
distance = 29.76 m
Therefore, markers are 29.76 m far apart in the laboratory
Answer:
For the car to move with constant velocity the additional force required is 
Explanation:
From the question we are told that
The net force of the car is 
Generally the total force acting on the car is the net force plus the force due to gravity acting in direction of the car (Let denote it as
)
So the total force acting on the car is mathematically represented as

Here this F representing the total force can be mathematically represented as

Now for constant velocity to be attained, the acceleration of the car will be zero
So at constant velocity

=> 
So

=> 
=> 
Different wavelengths of light are seen as colors