Answer:
The values is 
Explanation:
From the question we are told that
The speed of the fire engine is 
The frequency of the tone is 
The speed of sound in air is 
The beat frequency is mathematically represented as

Where
is the frequency of sound heard by the people in the fire engine and is is mathematically evaluated as
![f_a = [\frac{v_s + v }{v_s -v} ]* f](https://tex.z-dn.net/?f=f_a%20%20%3D%20%20%5B%5Cfrac%7Bv_s%20%2B%20v%20%7D%7Bv_s%20%20-v%7D%20%5D%2A%20f)
substituting values
![f_a = [\frac{340 + 5 }{340 -5} ]* 500](https://tex.z-dn.net/?f=f_a%20%20%3D%20%20%5B%5Cfrac%7B340%20%2B%205%20%7D%7B340%20%20-5%7D%20%5D%2A%20500)

Thus


Answer:
Block A
Explanation:
Block A will float higher in the water compared to the second Block.
The density of water is 1g/cm³.
According to the principle of floatation "an object that floats in a liquid will displace equal amount of fluid to the weight of the object".
A body will become more submerged in water if it has more density because density is the mass per volume of body.
An object with a higher density than another will sink in the liquid of the one with lesser density.
- Object A has lesser density and will float higher up and displace very little water.
- Object B has higher density and will be more submerged.
Beat frequency is given by the difference of two frequencies played together

given that


Now


Answer:
The earthquake occurred at a distance of 1122 km
Explanation:
Given;
speed of the P wave, v₁ = 8.5 km/s
speed of the S wave, v₂ = 5.5 km/s
The distance traveled by both waves is the same and it is given as;
Δx = v₁t₁ = v₂t₂
let the time taken by the wave with greater speed = t₁
then, the time taken by the wave with smaller speed, t₂ = t₁ + 1.2 min, since it is slower.
v₁t₁ = v₂t₂
v₁t₁ = v₂(t₁ + 1.2 min)
v₁t₁ = v₂(t₁ + 72 s)
v₁t₁ = v₂t₁ + 72v₂
v₁t₁ - v₂t₁ = 72v₂
t₁(v₁ - v₂) = 72v₂

The distance traveled is given by;
Δx = v₁t₁
Δx = (8.5)(132)
Δx = 1122 km
Therefore, the earthquake occurred at a distance of 1122 km
Translating the first sentence into equation we get, t = k(1/h)
where t is time in seconds, k is the constant and h is the horsepower. Substituting
the values in the equation we have, 12s = k(1/200) we have a k = 2400 seconds –
hp. To get the time at 240 hp we use the equation above and the constant, we
get, t = (2400 seconds-hp)(1/240hp) t = 10seconds.