Answer:
It takes 266 seconds to melt the ice.
Explanation:
Given data
- Power of the microwave oven (P): 125 Watt
- Heat supplied to the ice (Q): 33,200 Joule
- Time for the melting (t): to be determined
In order to determine the time required to melt the ice, we can use the following expression.
P = Q/t
t = Q / P = 33,200 J/ 125 W = 266 s
It takes 266 seconds to melt the ice.
Answer:
a) t = 4.16 s
b) x = 141.51 m
Explanation:
Given
v = 21.5 m/s
x0 = 52.0 m
a = 6.0 m/s²
a) Motorcycle
x = v0*t + (a*t²/2)
x = 21.5t + (6*t²/2)
x = 21.5t + 3t² <em>(I)</em>
Car
x = x0 + v0*t
x = 52 + 21.5t <em>(II)</em>
<em />
then we can apply <em>I = II</em>
21.5t + 3t² = 52 + 21.5t
⇒ 3t² = 52
⇒ t = 4.16 s
b) We can use <em>I</em> or <em>II</em>, then
x = 52 + 21.5*(4.16)
⇒ x = 141.51 m
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C
According to Newton second law of motion, the resultant force is directly proportional to the rate of change in momentum while maintaining other factors constant. Therefore, F = (mv-mu)/t where F is the resultant force , m is the mass of the object, v is the final velocity and u is the initial velocity.
Hence, Ft = mv-mu, but impulse is given by force multiplied by time, thus, impulse is equivalent to the change in momentum.
Impulse = Ft
= 325 × 2.2 sec
= 715 Ns
Boron Group
elements have three valence electrons and are fairly reactive. All of them are solids at room temperature. Boron is a very hard, black metalloid with a high melting point.