Answer:
feet and
feet
The least amount of fencing required = 40 feet.
Step-by-step explanation:
Let us take
be the length of the garden and
be width of the garden.
The area of the rectangular garden will be,
...{1}
Perimeter of the garden,
.
[ because one side of the garden is protected by a barn ]
Thus,
![P=2 x+y](https://tex.z-dn.net/?f=P%3D2%20x%2By)
or
[using 1]
![\frac{d P}{d x}=2-\frac{200}{x^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%20P%7D%7Bd%20x%7D%3D2-%5Cfrac%7B200%7D%7Bx%5E%7B2%7D%7D)
For points of maxima or minima
![\frac{d P}{d x}=0 \Rightarrow 2-\frac{200}{x^{2}}=0 \Rightarrow x^{2}=100 \Rightarrow x=\pm 10](https://tex.z-dn.net/?f=%5Cfrac%7Bd%20P%7D%7Bd%20x%7D%3D0%20%5CRightarrow%202-%5Cfrac%7B200%7D%7Bx%5E%7B2%7D%7D%3D0%20%5CRightarrow%20x%5E%7B2%7D%3D100%20%5CRightarrow%20x%3D%5Cpm%2010)
Since length cannot be negative,
is rejected.
Thus,
![\frac{d^{2} P}{d x^{2}}=-(-2) \frac{200}{x^{3}}=\frac{400}{x^{3}}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5E%7B2%7D%20P%7D%7Bd%20x%5E%7B2%7D%7D%3D-%28-2%29%20%5Cfrac%7B200%7D%7Bx%5E%7B3%7D%7D%3D%5Cfrac%7B400%7D%7Bx%5E%7B3%7D%7D)
![\left(\frac{d^{2} P}{d x^{2}}\right)_{x=10}=\frac{400}{10^{3}}>0](https://tex.z-dn.net/?f=%5Cleft%28%5Cfrac%7Bd%5E%7B2%7D%20P%7D%7Bd%20x%5E%7B2%7D%7D%5Cright%29_%7Bx%3D10%7D%3D%5Cfrac%7B400%7D%7B10%5E%7B3%7D%7D%3E0)
Hence at
, The perimeter
will be min.
On substituting
in
then ![y=20](https://tex.z-dn.net/?f=y%3D20)
Hence, the dimensions of the garden are:
feet and
feet
The perimeter,
feet i.e the least amount of fencing required.