Answer:
32%
Step-by-step explanation:
Answer:
<h2>50</h2>
Step-by-step explanation:
Put h = 7 to the expression 5 · (h + 3):

Answer:
39.17% probability that a woman in her 60s who has a positive test actually has breast cancer
Step-by-step explanation:
Bayes Theorem:
Two events, A and B.

In which P(B|A) is the probability of B happening when A has happened and P(A|B) is the probability of A happening when B has happened.
In this question:
Event A: Positive test.
Event B: Having breast cancer.
3.65% of women in their 60s get breast cancer
This means that 
A mammogram can typically identify correctly 85% of cancer cases
This means that 
Probability of a positive test.
85% of 3.65% and 100-95 = 5% of 100-3.65 = 96.35%. So

What is the probability that a woman in her 60s who has a positive test actually has breast cancer?

39.17% probability that a woman in her 60s who has a positive test actually has breast cancer
Answer:
A.)
Step-by-step explanation:
A.)
Answer:
(x + 1)² = 7
Step-by-step explanation:
Given:
-2x = x² - 6
We'll start by rearranging it to solve for zero:
x² + 2x - 6 = 0
The first term is already a perfect square so that's fine. Normally, if that term had a non-square coefficient, you would need to multiply all terms a value that would change that constant to a perfect square.
Because it's already square (1), we can simply move to the next step, separating the -6 into a value that can be doubled to give us the 2, the coefficient of the second term. That value will of course be 1, giving us:
x² + 2x + 1 - 1 - 6 = 0
Now can group our perfect square on the left and our constants on the right:
x² + 2x + 1 - 7= 0
x² + 2x + 1 = 7
(x + 1)² = 7
To check our answer, we can solve for x:
x + 1 = ± √7
x = -1 ± √7
x ≈ 1.65, -3.65
Let's try one of those in the original equation:
-2x = x² - 6
-2(1.65) = 1.65² - 6
- 3.3 = 2.72 - 6
-3.3 = -3.28
Good. Given our rounding that difference of 2/100 is acceptable, so the answer is correct.