Answer:
a)
b)
c)
d)
m
e)λ=∞
Explanation:
De Broglie discovered that an electron or other mass particles can have a wavelength associated, and that wavelength (λ) is:

with h the Plank's constant (
) and P the momentum of the object that is mass (m) times velocity (v).
a)

b)

c)

d)
m
e) 
λ=∞
Answer:
i)-6.25m/s
ii)18 metres
iii)26.5 m/s or 95.4 km/hr
Explanation:
Firstly convert 90km/hr to m/s
90 × 1000/3600 = 25m/s
(i) Apply v^2 = u^2 + 2As...where v(0m/s) is the final speed and u(25m/s) is initial speed and also s is the distance moved through(50 metres)
0 = (25)^2 + 2A(50)
0 = 625 + 100A....then moved the other value to one
-625 = 100A
Hence A = -6.25m/s^2(where the negative just tells us that its deceleration)
(ii) Firstly convert 54km/hr to m/s
In which this is 54 × 1000/3600 = 15m/s
then apply the same formula as that in (i)
0 = (15)^2 + 2(-6.25)s
-225 = -12.5s
Hence the stopping distance = 18metres
(iii) Apply the same formula and always remember that the deceleration values is the same throughout this question
0 = u^2 + 2(-6.25)(56)
u^2 = 700
Hence the speed that the car was travelling at is the,square root of 700 = 26.5m/s
In km/hr....26.5 × 3600/1000 = 95.4 km/hr
Answer:
here
Explanation:
There are two forces acting upon the skydiver - gravity (down) and air resistance (up). The force of gravity has a magnitude of m•g = (72 kg) •(9.8 m/s/s) = 706 N. ... a 3.25-kg object rightward with a constant acceleration of 1.20 m/s/s if the force of ... of 33.8 kg, how far (in meters) will it move in 1.31 seconds, starting from rest?
The answer that best fits the blank is the term WAXING. The moon is waxing whenever it reaches to the period that its phases are transitioning from new to full. The answer is the first option. This is when it is more that half is illuminated. Hope this helps.