Answer:

Explanation:
For a linear elastic material Young's modulus is a constant that is given by:

Here, F is the force exerted on an object under tensio, A is the area of the cross-section perpendicular to the applied force,
is the amount by which the length of the object changes and
is the original length of the object. In this case the force is the weight of the mass:

Replacing the given values in Young's modulus formula:

Answer:
1.28 m
Explanation:
As shown in the diagram attached,
According to the principle of moment,
For a body at equilibrium,
Sum of clockwise moment = sum of anticlockwise moment.
Taking moment about the pivot,
W₁(1.6)+W(0.133) = W₂(x)............... Equation 1
Where W₁ = Weight of the first child, Wₓ = Weight of the seesaw, W₂ = weight of the second child, x = distance of the second child from the pivot.
But,
W = mg
Where g = 9.8 m/s², m = mass of the body
Therefore,
W₁ = 26×9.8 = 254.8 N,
Wₓ = 18×9.8 = 176.4 N
W₂ = 34.4×9.8 = 337.12 N
Substitute these values into equation 1
(254.8×1.6)+(176.4×0.133) = 337.12(x)
407.68+23.4612 = 337.12x
337.12x = 431.1412
x = 431.1412/337.12
x = 1.2789
x ≈ 1.28 m
Answer:
d = 9.69 cm
Explanation:
given,
mass of the block = 1.2 Kg
spring force constant(k) = 730 N/m
spring is compressed = d = ?
rough patch width = 5 cm
μ_k = 0.44
work done by friction = energy lost




d = 0.0969 m
d = 9.69 cm
Answer:
The Physical Behavior of Objects when Gravity is Missing
In order to be able to form a concept of the general physical conditions existing in a weightless state, the following must be noted: the force of the Earth's gravity pulling all masses down to the ground and thus ordering them according to a certain regularity is no longer active.