False. That description fits the wave's 'frequency'.
It has nothing to do with refraction.
In order to find the radius of the coin, we need to use:
Ac = V^2 r
In which,
Ac = acceleration of the coin = 2.2 m/s^2
V= rotational Speed = (18/12) * 2πr
r= Radius
so,
<span>2.2 = 9(π^2)(r^2) / r
</span><span>= 9(π^2)r
</span>
<span>r = 2.2 / 9(π^2) = 0.02476740044 m . . .or you can rounded it up to 0.025 m</span>
Velocities of their center of mass after collisions are found by the following formula as shown in the image:
<h3>What are elastic collisions?</h3>
- An elastic collision is one in which there is no energy lost during the impact. A moderately inelastic collision occurs when some energy is wasted yet the items do not cling together. The maximum amount of energy is wasted when the objects collide in a perfectly inelastic impact. The kinetic energy doesn't change.
- It may be two dimensions or one dimension. Because there will always be some energy exchange, no matter how tiny, totally elastic collision is not conceivable in the real world.
- While the overall system's linear momentum does not change, the individual momenta of the participating components do, and because these changes are equal and opposite in size and cancel each other out, the initial energy is conserved.
To learn more about Elastic collisions refer to:
brainly.com/question/2356330
#SPJ4
Answer:
Isovolumic
Explanation:
In thermodynamics, the process whereby A real gas is changed slowly from state 1 to state 2 and in this process there's no work done on or by the gas is called Isovolumic process.