Answer:
Explanation:
The properties of magnets are used to make electricity. Moving magnetic fields pull and push electrons. ... Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current.
F=dP/dt. So you want the momentum to change as slowly as possible in time to minimize the force. So as you catch the egg, let your hand move backward with it for awhile, slowly bringing it to a stop. If you hold your hand steady when you catch it the force due to the impact could break it.
This question is incomplete, the complete question is;
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 7 mV/m.
At what rate is the magnetic field changing?
Answer:
the magnetic field changing at the rate of 9.33 m T/s
Explanation:
Given the data in the question;
Electric field E = 7 mV/m
radius r = 1.5 m
Now, from Faraday law of induction;
∫E.dl = d∅/dt
E∫dl = A( dB/dt )
E( 2πr ) = πr² ( dB/dt )
( 0.007 ) = (r/2) ( dB/dt )
( 0.007 ) = 0.75 ( dB/dt )
dB/dt = 0.007 / 0.75
dB/dt = 0.00933 T/s
dB/dt = ( 0.00933 × 1000) m T/s
dB/dt = 9.33 m T/s
Therefore, the magnetic field changing at the rate of 9.33 m T/s