Answer:
A.) 3605.6 N
B.) 33.7 degree
Explanation:
To find the result force acting on the wing of the airplane, we need to resolve the forces into x and y components
Resolving into x component :
Sum of forces = 3500 - 500 = 3000N
Resolving into y component:
Sum of forces = 2000N
Resultant force Fr = sqrt ( Fx^2 + Fy^2)
Fr = sqrt ( 3000^2 + 2000^2 )
Fr = sqrt ( 9000000 + 4000000 )
Fr = sqrt ( 13000000)
Fr = 3605.6 N
Therefore, resultant force acting on the wing is 3605.6 N
The direction of the vector will be:
Tan Ø = Fy / Fx
Substitute Fx and Fy into the formula
Tan Ø = 2000 / 3000
Tan Ø = 0.66666
Ø = tan^-1(0. 66666)
Ø = 33.7 degree.
Answer:
Explanation:
The force is defined as the negative of the derivative of the potential energy:
If we use the potential energy function given in this problem:
and we calculate the force, we get:
So, the force is
<span>Self-monitoring would be the best way to </span><span>determine your own correct intensity level. I hope this helps! <3
</span>
The correct answer is A, 2x^3 - x^2 +3x +7
Answer:
100 times
Explanation:
Since inertia is directly proportional to the mass of an object, the higher the mass the higher the inertia. In this case, 6 Kg is 100 times heavier than 0.06 Kg to imply The bowling ball has 100 times more inertia than the tennis ball because it has 100 times more mass