It would be B, like charges repel and unlike charges attract.
Answer:
The answer is A good luck :P
Answer:
(A) -2940 J
(B) 392 J
(C) 212.33 N
Explanation:
mass of bear (m) = 25 kg
height of the pole (h) = 12 m
speed (v) = 5.6 m/s
acceleration due to gravity (g) = 9.8 m/s
(A) change in gravitational potential energy (ΔU) = mg(height at the bottom- height at the top)
height at the bottom = 0
= 25 x 9.8 x (0-12) = -2940 J
(B) kinetic energy of the Bear (KE) =
=
= 392 J
(C) average frictional force = 
- change in KE (ΔKE) = initial KE - final KE
- ΔKE =
-
- when the Bear reaches the bottom of the pole, the final velocity (Vf) is 0, therefore the change in kinetic energy becomes ΔKE =
- 0 = 392 J
\frac{-(ΔKE+ΔU)}{h}[/tex] =
=
= 212.33 N
Biology, physics, geology
Answer:
(a) 2.33 A
(b) 15.075 V
Explanation:
From the question,
The total resistance (Rt) = R1+R2 = 3.85+6.47
R(t) = 10.32 ohms.
Applying ohm's law,
V = IR(t)..........equation 1
Where V = Emf of the battery, I = current flowing through the circuit, R(t) = combined resistance of both resistors.
Note: Since both resistors are connected in series, the current flowing through them is the same.
Therefore,
I = V/R(t)............. Equation 2
Given: V = 24 V, R(t) = 10.32 ohms
Substitute these values into equation 2
I = 24/10.32
I = 2.33 A.
Hence the current through R1 = 2.33 A.
V2 = IR2.............. Equation 3
V2 = 2.33(6.47)
V2 = 15.075 V