1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
3 years ago
14

A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What wil

l be the wavelength if the tension is decreased to 600 N and the frequency is kept constant
Physics
1 answer:
mash [69]3 years ago
5 0

Answer:

The wavelength will be 33.9 cm

Explanation:

Given;

frequency of the wave, F = 1200 Hz

Tension on the wire, T = 800 N

wavelength, λ = 39.1 cm

F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}

Where;

F is the frequency of the wave

T is tension on the string

μ is mass per unit length of the string

λ is wavelength

\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu =  \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\

when the tension is decreased to 600 N, that is T₂ = 600 N

T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2  = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2  = \sqrt{0.11466} \\\\\lambda _2  =0.339 \ m\\\\\lambda _2  =33.9  \ cm

Therefore, the wavelength will be 33.9 cm

You might be interested in
Weather maps use isobar lines to show weather conditions. Which of the following information is indicated by these lines?
marishachu [46]
A its is high and low pressure areas
4 0
3 years ago
Read 2 more answers
Does a comets tail always trail along behind it in its orbit?
Marat540 [252]
No, it only does when entering an atmosphere
4 0
3 years ago
What are some ways that humans depend on the ocean?
yulyashka [42]

Answer:

A lot of the earth oxygen comes from the ocean around 50%-80%

Explanation:

5 0
2 years ago
Read 2 more answers
Two stones are launched from the top of a tall building. One stoneis thrown in a direction 30.0^\circ above the horizontal with
Butoxors [25]

Answer:

Part A)

t(1) > t(2), the stone thrown 30 above the horizontal spends more time in the air.

Part B)

x(f1) > x(f2), the first stone will land farther away from the building.

Explanation:

<u>Part A)</u>

Let's use the parabolic motion equation to solve it. Let's define the variables:

  • y(i) is the initial height, it is a constant.
  • y(f) is the final height, in our case is 0
  • v(i) is the initial velocity (v(i)=16 m/s)
  • θ1 is the first angle, 30°
  • θ2 is the first angle, -30°

For the first stone

y_{f1}=y_{i1}+v*sin(\theta_{1})t_{1}-0.5gt_{1}^{2}              

0=y_{i1}+16*sin(30)t_{1}-0.5*9.81*t_{1}^{2}

0=y_{i1}+8t_{1}-4.905*t_{1}^{2} (1)  

For the second stone  

0=y_{i2}+16*sin(-30)t_{2}-4.905t_{2}^{2}    

0=y_{i2}-8t_{2}-4.905t_{2}^{2} (2)            

 

If we solve the equation (1) we will have:

t_{1}=\frac{-8\pm \sqrt{64+19.62*y_{i}}}{-9.81}  

We can do the same procedure for the equation (2)

t_{1}=\frac{8\pm \sqrt{64+19.62*y_{i}}}{-9.81}

We can analyze each solution to see which one spends more time in the air.

It is easy to see that the value inside the square root of each equation is always greater than 8, assuming that the height of the building is > 0. Now, to get positive values of t(1) and t(2) we need to take the negative option of the square root.

Therefore, t(1) > t(2), it means that the stone thrown 30 above the horizontal spends more time in the air.

<u>Part B)</u>

We can use the equation of the horizontal position here.

<u>First stone</u>

x_{f1}=x_{i1}+vcos(30)t_{1}

x_{f1}=0+13.86*t_{1}

x_{f1}=13.86*t_{1}

<u>Second stone</u>

x_{2}=x_{i2}+vcos(-30)t_{2}

x_{1}=0+13.86*t_{1}

x_{1}=13.86*t_{2}

Knowing that t(1) > t(2) then x(f1) > x(f2)

Therefore, the first stone will land farther away from the building.

They land at different points at different times.

I hope it helps you!

3 0
3 years ago
In order to waken a sleeping child, the volume on an alarm clock is doubled. Under this new scenario, how much more energy will
Kamila [148]

Answer:4 times more energy will be striking the childbearing

Explanation:

Because Volume is directly proportional to amplitude of sound. Energy is proportional to amplitude squared. If you triple the amplitude, you multiply the energy by 4

5 0
2 years ago
Other questions:
  • Select the answer choices that describe where plasmas can be found.
    8·2 answers
  • When I hurricane nearest land what causes the most damage
    6·2 answers
  • What is the strength of the electric field 0.020 m from a 12 uc charge?
    14·1 answer
  • Which of these is an example of an elastic collision? A. The cue ball crashing into the eight balls on a pool table. B. Two cars
    9·1 answer
  • John heats 1 kg of soup from 25 °C to 70 °C for 15 minutes by a heater. How long does the same heater take to heat 1.5 kg of the
    14·1 answer
  • How fast does a 2 MeV fission neutron travel through a reactor core?
    9·1 answer
  • The density of ice is 917 kg/m3, and the density of sea water is 1025 kg/m3. A swimming polar bear climbs onto a piece of floati
    15·1 answer
  • How does molten rock and gas leave the volcano
    10·1 answer
  • What is the rate at which an object moves but doesn't include direction?
    12·1 answer
  • Please help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!