Beaker would be most appropriate for measuring the approximate volume of a liquid.
Answer:

Explanation:
<u>Displacement Vector</u>
Suppose an object is located at a position

and then moves at another position at

The displacement vector is directed from the first to the second position and can be found as

If the position is given as magnitude-angle data ( z , α), we can compute its rectangular components as


The question describes the situation where the initial point is the base of the mountain, where both components are zero

The final point is given as a 520 m distance and a 32-degree angle, so


The displacement is

Answer:
7.78x10^-8T
Explanation:
The Pointing Vector S is
S = (1/μ0) E × B
at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,
S = (1/μ0) E B
where S, E and B are magnitudes. The average value of the Pointing Vector is
<S> = [1/(2 μ0)] E0 B0
where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)
Also at any instant,
E = c B
where E and B are magnitudes, so it must also be true at the instant of peak values
E0 = c B0
Substituting for E0,
<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²
Solve for B0.
Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)
= 7.79 x10 ^-8 T
Initially they are connected in parallel, so they have the same voltage V=120 V at their ends. Therefore we can use Ohm's law to calculate the resistance of each appliance:


When they are connected in series, they are crossed by the same current I. The equivalent resistance of the circuit in this case is

, so we can use Ohm's law for the entire circuit to find the current in the circuit: