1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
9

What the direction of the moving force of air

Physics
1 answer:
baherus [9]3 years ago
7 0
Air can go in any direction. . .
You might be interested in
Which of the following is a unit of volume in the English system of measurement? (4 points)
Levart [38]
The answer is gallons.
3 0
3 years ago
Read 2 more answers
A current of 4.00 mA flows through a copper wire. The wire has an initial diameter of 4.00 mm which gradually tapers to a diamet
lesya692 [45]

The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

The given parameters;

  • <em>Current flowing in the wire, I = 4.00 mA</em>
  • <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
  • <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
  • <em>Length of wire, L = 2.00 m</em>
  • <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>

<em />

The initial area of the copper wire;

A_1 = \frac{\pi d^2}{4} = \frac{\pi \times (0.004)^2}{4} =1.257\times 10^{-5} \ m^2

The final area of the copper wire;

A_2 = \frac{\pi d^2}{4} = \frac{\pi (0.001)^2}{4} = 7.86\times 10^{-7} \ m^2

The initial drift velocity of the electrons is calculated as;

v_d_1 = \frac{I}{nqA_1} \\\\v_d_1 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 1.257\times 10^{-5}} \\\\v_d_1 = 2.34 \times 10^{-8} \ m/s

The final drift velocity of the electrons is calculated as;

v_d_2 = \frac{I}{nqA_2} \\\\v_d_2 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 7.86\times 10^{-7}} \\\\v_d_2 = 3.74\times 10^{-7}  \ m/s

The change in the mean drift velocity is calculated as;

\Delta v = v_d_2 -v_d_1\\\\\Delta v = 3.74\times 10^{-7} \ m/s \ -\ 2.34 \times 10^{-8} \ m/s = 3.506\times 10^{-7} \ m/s

The time of motion of electrons for the initial wire diameter is calculated as;

t_1 = \frac{L}{v_d_1} \\\\t_1 = \frac{2}{2.34\times 10^{-8}} \\\\t_1 = 8.547\times 10^{7} \ s

The time of motion of electrons for the final wire diameter is calculated as;

t_2 = \frac{L}{v_d_1} \\\\t_2= \frac{2}{3.74 \times 10^{-7}} \\\\t_2 = 5.348 \times 10^{6} \ s

The average acceleration of the electrons is calculated as;

a = \frac{\Delta v}{\Delta t} \\\\a = \frac{3.506 \times 10^{-7} }{(8.547\times 10^7)- (5.348\times 10^6)} \\\\a = 4.38\times 10^{-15} \ m/s^2

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

Learn more here: brainly.com/question/22406248

7 0
2 years ago
A truck pushes a pile of dirt horizontally on a frictionless road with a net force of 20\, \text N20N20, start text, N, end text
meriva

Answer:

300 Nm ; 300 J

Explanation:

Given that:

Force (F) = 20 N

Distance (d) = 15 m

The kinetic energy (Workdone) = Force * Distance

Kinetic Energy = 20N * 15m

Kinetic Energy = 300Nm

K. E = 1/2

4 0
3 years ago
Read 2 more answers
True or false your vocal cords act like a guitar string when it comes to sound
torisob [31]

Answer:

True

Explanation:

8 0
3 years ago
Read 2 more answers
A 20 μF capacitor initially charged to 30 μC is discharged through a 1.5 kΩ resistor. Part A How long does it take to reduce the
Natasha_Volkova [10]

Answer:

it will take 36.12 ms to reduce the capacitor's charge to 10 μC

Explanation:

Qi= C×V

then:

Vi = Q/C = 30μ/20μ = 1.5 volts

and:

Vf = Q/C = 10μ/20μ = 0.5 volts

then:

v = v₀e^(–t/τ)  

v₀ is the initial voltage on the cap  

v is the voltage after time t  

R is resistance in ohms,  

C is capacitance in farads  

t is time in seconds  

RC = τ = time constant  

τ = 20µ x 1.5k = 30 ms  

v = v₀e^(t/τ)  

0.5 = 1.5e^(t/30ms)  

e^(t/30ms) = 10/3  

t/30ms = 1.20397

t = (30ms)(1.20397) = 36.12 ms

Therefore, it will take 36.12 ms to reduce the capacitor's charge to 10 μC.

7 0
3 years ago
Other questions:
  • A river has a steady speed 0.500 m/s. A student swims upstream a distance of1.00 km and swims back to the starting point. a) If
    10·1 answer
  • Assume that a clay model of a lion has a mass of 0.225 kg and travels on the ice at a speed of 0.85 m/s. It hits another clay mo
    8·1 answer
  • Represent 8953 ms with Sl units having an appropriate prefix Express your answer to four significant figures and include the app
    7·1 answer
  • 23. In an attempt to escape his island, Gilligan builds a raft and sets to sea. The wind shifts a great deal during the day, and
    10·1 answer
  • Convert 13.6g/cm3 into kg/m3​
    6·1 answer
  • Which of the following is an example of frontier research?
    13·1 answer
  • When the same pole of a magnet face each other it will attract each other true or false?​
    7·1 answer
  • 4. What would you suggest we do to reduce our trade deficit?
    10·1 answer
  • If a skydiver jumps out of a plane horizontally (in other words with no initial vertical velocity), then what will her vertical
    8·1 answer
  • How changes in solar position influence the intensity of radiation on a horizontal surface?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!