Answer:

Explanation:
We can use the Ideal Gas Law and solve for T.
pV = nRT
Data
p = 1.25 atm
V = 25.0 L
n = 2.10 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
Calculations
1. Temperature in kelvins

2. Temperature in degrees Celsius

Answer:
John Dalton is the correct answer.
Explanation:
Look I am not even close to a genius in this type of stuff but the leaves help collect energy and sunlight for the plant to live off of during the winter. It basically needs them for processing and helping them with their food. Also food is stored in every pine needles mitochondrion or the powerhouse of their cell structure. In the mitochondrion their is things like chloropasts. These are like the energy or food for the cell. So when the tree cant draw nutrients from its roots or soil anymore all the excess things stored in the pine needles will help the tree survive.
Answer:
H2
Explanation:
Critical temperature is the temperature above which gas cannot be liquefied, regardless of the pressure applied.
Critical temperature directly depends on the force of attraction between atoms, it means stronger the force of higher will be the critical temperature. So, from the given options H2 should have the highest critical temperature because of high attractive forces due to H bonding.
Hence, the correct option is H2.
Answer:
Boron has a larger radius and the protons in carbon exert more pull.
Explanation:
Remember than elements have greater radius as they are closer to the bottom left corner, so boron would have the larger radius here. Carbon has a smaller radius, which makes it easier for the protons in carbon to exert more pull.