It's where chemical elements are organized based on atomic weight. Also, like/similar physical and chemical properties in each interval of 7 elements.
It was a silly reason it was rejected. It was rejected because it's octaves were too similar to those in music.
I hope this helps!
Answer: A planet from a rain forest would not survive in a desert home, for the fact they depend on water and as these live from water, without it, this leads to dehydration and with loss of water with plants, nothing is able to survive when it comes to a rain forest plant being in a desert home. Another reason is the high trees and leaves that are providing the plants enough sunlight or shade to grow, it guarantees to help keep the temperature normal. Being in a deserted area would mean that there would be a temperature change, something the plant is not used to. Without that needed shade and avoiding the scorching sun, they will die out from how different the temperature is, and how hot it is.
Explanation: I hope this helped you.
In order to determine whether a bond is ionic or covalent, you need to know whether or not it is completely composed of nonmetal atoms or both metal and nonmetal ions.
Barium is a metal and Oxygen is a nonmetal, therefore there is no possible way they could bond unless they were attracted to opposite charges. Specifically, only if Barium becomes a cation and Oxygen becomes an anion then could they bond.
Now cation and anion both have the word "ion" in them, so therefore it must be an ionic bond.
Now we need to know the definition of a bond. A bond is formed when two elements are joined together by sharing their valence electrons.
Therefore, your answer should be:
Ionic, because valence electrons are shared.
Problem One
<em><u>Formula</u></em>
N(t) = No * (1/2)^[t/t_1/2]
<em><u>Givens</u></em>
N(t) = the current mass of the sample = 2.10 grams
No = The original mass of the sample = No [We're trying to find this].
t = time elapsed which is 2.6 billion years or 2.6 * 10^9 years.
t1/2 = the 1/2 life time which is 1.3 billion years of 1.3 *10^9
<em><u>Solution</u></em>
2.10 grams = No (1/2)^(2.6*10^9/1.3 * 10^9)
The 10^9s cancel and you are left with 2.6/1.3 = 2
2.10 grams = No (1/2)^2
2.10 grams = No (1/4) Multiply both sides by 4
2.10 * 4 = No (1/4)*4
8.4 grams = No
which is how many grams you originally had.
Answer B.
Problem Two

Solve for y
2 + 2 = y + 1
4 = y + 1
y = 3
Solve for z
1 + 1 = z + 0
z = 2
The 2 tells you that it is the second member on the periodic table. That's Helium. So the answer looks like this.

The mass of the Helium is 3 and its number is two.
The causes of mass extinction
As there might be marks on fossils showing the suffering that happened to it!