Answer:
1.25 standard atmosphere = 950 Torr
Explanation:
Formula
multiply the pressure value by 760!!
1. Calcium hydrogen phosphate
2. Iron(II) Hydrogen Sulfate
3. Calcium hydroxide
4. Aluminum chloride hydroxide
Answer:
In an experiment, a student transferred 4.50 mL of a liquid into a pre-weighed beaker (the weight of which was determined to be 35.986 g ).
Explanation:
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>
<em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em>
Answer:
One can determine the specific heat of the metal through using the clarimeter, water, thermometer and using heat equations.
Explanation:
You can learn about heat effects and calorimetery through a simple experiment by boiling water and heating up the metal in it. Then, pour it into your calorimeter and the heat will flow from the metal to the water. The two equlibria will meet: the metal will loose heat into its surroundings (the water) and teh water will absorb the heat. The heat flow for the water is the same as it is for the metal, the only difference being is the negative sign indicating the loss of the heat of the metal.
In terms of theromdynamics, we can deteremine the heat flow for the metal becasue it would be equal to the mangnitued but opposite in direction. Thus, we can say that the specific heat of water qH2O = -qmetal.
Answer is: Increased pressure would increase the rate of forming water vapor.
According to Le Chatelier's Principle, the position of equilibrium moves to counteract the change, the position of equilibrium will move so that the concentration of products (water waper) of chemical reaction increase, if:
1) decrease temperature, because this is exothermic reaction (ΔH is negative).
2) increase concentration of reactants (oxygen and hydrogen).
3) increase pressure of the system, so reaction moves to direction where is less molecules.