The given question is incomplete. The complete question is:
When 136 g of glycine are dissolved in 950 g of a certain mystery liquid X, the freezing point of the solution is 8.2C lower than the freezing point of pure X. On the other hand, when 136 g of sodium chloride are dissolved in the same mass of X, the freezing point of the solution is 20.0C lower than the freezing point of pure X. Calculate the van't Hoff factor for sodium chloride in X.
Answer: The vant hoff factor for sodium chloride in X is 1.9
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
= freezing point constant
i = vant hoff factor = 1 ( for non electrolyte)
m= molality =

Now Depression in freezing point for sodium chloride is given by:
= Depression in freezing point
= freezing point constant
m= molality =


Thus vant hoff factor for sodium chloride in X is 1.9
Answer:
Anhydrous sodium carbonate is stable to heat and does not decompose even when it is heated to redness. This is because sodium carbonate salt on heating with acids react to release carbon dioxide.
2.1648 kg of CH4 will generate 119341 KJ of energy.
Explanation:
Write down the values given in the question
CH4(g) +2 O2 → CO2(g) +2 H20 (g)
ΔH1 = - 802 kJ
2 H2O(g)→2 H2O(I)
ΔH2= -88 kJ
The overall chemical reaction is
CH4 (g)+2 O2(g)→CO2(g)+2 H2O (I) ΔH2= -890 kJ
CH4 +2 O2 → CO2 +2 H20
(1mol)+(2mol)→(1mol+2mol)
Methane (CH4) = 16 gm/mol
oxygen (O2) =32 gm/mol
Here 1 mol CH4 ang 2mol of O2 gives 1mol of CO2 and 2 mol of 2 H2O
which generate 882 KJ /mol
Therefore to produce 119341 KJ of energy
119341/882 = 135.3 mol
to produce 119341 KJ of energy, 135.3 mol of CH4 and 270.6 mol of O2 will require
=135.3 *16
=2164.8 gm
=2.1648 kg of CH4
2.1648 kg of CH4 will generate 119341 KJ of energy
Answer:
J (joule) W(watt)
Explanation:
If you're looking for the definition it is
The most common definition of energy is the work that a certain force can do. Energy also cannot be created or destroyed and some examples are
light, heat, mechanical, potential, and kinetic
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.