Surface tension
..viscosity is the thickness of a liquid, doesn't fit here...condensation and evaporation are processes not properties.
Answer:
Mice
Explanation:
Small, rodent-like mammals, such as voles and mice, are the primary prey for many owl species. An owl's diet may also include frogs, lizards, snakes, fish, mice, rabbits, birds, squirrels, and other creatures. Occasionally, Great Horned Owls might even find skunks tasty enough to eat.
Please mark brainliest! I only need one more to rank up! Thank you and have a blessed day/night :D
Gold has a heavy enough nucleus that its electrons must travel at speeds nearing the speed of light to prevent them from falling into the nucleus. This relativistic effect applies to those orbitals that have appreciable density at the nucleus, such as s and p orbitals. These relativistic electrons gain mass and as a consequence, their orbits contract. As these s and (to some degree) p orbits are contracted, the other electrons in d and f orbitals are better screened from the nucleus and their orbitals actually expand.
Since the 6s orbital with one electron is contracted, this electron is more tightly bound to the nucleus and less available for bonding with other atoms. The 4f and 5d orbitals expand, but can't be involved in bond formation since they are completely filled. This is why gold is relatively unreactive.
Hope it helps
There are 2 moles of O stones present in 88 grams of CO2. Why? Well, we can find the amount of moles present in 88 grams of CO2 by dividing the mass by the molar mass. The mass of CO2 comes out to be 88 grams. The molar mass of CO2 comes out to be 44 grams. Because 88 is the mass of CO2 and 44 is the molar mass of CO2, we can divide 88 by 44 to identify that there are 2.0 moles of O atoms present in 88 grams of CO2.
Your final answer: There are 2.0 moles of O atoms present in 88 grams of CO2. Your final answer to this question is D, or 2.0 moles. If you need to better understand, let me know and I will gladly assist you.
The process that is being shown by water being given off from a bond site is DEHYDRATION SYNTHESIS.
Dehydration synthesis is the process of joining two molecules or compounds together as a result of removal of water.