Yes it is available. It will continue catalyzing the reactions until it becomes completely consumed. That's how enzymes work. They work and are eventually consumed in the process completely without altering the reaction in any way other than speeding it up.
<span />
LiF or lithium fluoride is the non covalent molecule or ionic compound.
Option 3.
<h3><u>Explanation:</u></h3>
Covalent molecules are those molecules which do have actual bonds between the atoms present in the molecule by sharing of the electrons. But in ionic molecules, there's no actual bonds between the atoms, but the oppositely charged ions are attracted towards each other by means of electrostatic force of attraction.
The molecules that are formed by the atoms with high electronegativity and electropositivity are actually ionic because the atoms with high electronegativity are able to actually gain electron readily and the atoms with high electropositivity are actually ready to give the electrons to the electronegative elements.
Lithium is highly electropositive and fluoride is highly electronegative. So they establish an ionic bond. But other molecules like fluorine molecule has both the electronegative elements, Carbon monoxide has carbon which isn't electropositive highly, and ammonia has hydrogen which isn't electropositive.
So lithium fluoride is the ionic compound.
Answer: mitochondria
Explanation:
it affects the cell because it produces the power of the cell, let me know if this helpes
As we know that
P.E. = mgh
where,
P.E. = Potential energy of the object =?
m= mass of object= 3kg
g= acceleration due to gravity = 9.8 ms^-2
h = height between object and animal = 0 m
Then
P.E. = 3× 9.8 × 0 = 0 Joules or 0J
<em>Have a luvely day!</em>
BaSO₄ is relatively harmless, but BaS is highly toxic.
BaSO₄ is quite insoluble (240 µg/100 mL). It is a <em>mild irritant</em> in cases of skin contact and inhalation. However, it is <em>safe enough</em> that health professionals ask patients to drink a suspension of BaSO₄. The Ba is opaque to X-rays, so it makes the stomach and intestines more visible to radiographers.
BaS is soluble (7.7 g/100 mL). It reacts slowly with water and more rapidly in the acid conditions of the stomach to <em>release H₂S</em>.
BaS + 2HCl ⟶ BaCl₂ + H₂S
An H₂S concentration of 60 mg/100 mL can be <em>fatal within 30 min</em>.
<em>Don’t eat barium sulfide!</em>