Answer:
a)23.2 L
b)68.3kPa
c)7.5 atm
d)60.5L
e)1.67 atm
Explanation:
From Boyle's law:
P1V1=P2V2
P1= 748mmHg
P2=725mmHg
V1= 22.5L
V2??
V2= P1V1/P2= 748×22.5/725= 23.2 L
b)
V1=4.0L
P1= 205×10^3Pa
V2= 12.0L
P2=???
P2= P1V1/V2= 205×10^3×4/12
P2= 68.3×10^3 Pa or 68.3kPa
c)
P1= 1 atm
V1= 196.0L
P2= ??
V2= 26.0L
P2= P1V1/V2=1×196.0/26.0
P2= 7.5 atm
d)
V1= 40.0L
P1= 12.7×10^3Pa
V2=???
P2= 8.4×103Pa
V2= P1V1/P2= 12.7×10^3×40.0/8.4×103
V2=60.5L
e)
V1= 100mL
P1= 1atm
V2= 60mL
P2=???
P2= P1V1/V2= 1×100/60
P2= 1.67 atm
Answer:
A net ionic equation shows only the chemical species that are involved in a reaction, while a complete ionic equation also includes the spectator ions.
Brainlist pls!
Answer:
35.7%
Explanation:
The percent yield is calculated by the formula:
<em>[(actual yield) / (theoretical yield)] * 100</em>
In this case, the actual yield is 0.15 grams, and the theoretical yield is 0.42 grams. So, putting these values into the equation, we have:
Thus, the percent yield of is 35.7%.
Hope this helps!
When the reaction equation is:
HgBr2(s) ↔ Hg2+(aq) + 2Br-(aq)
So Ksp expression = [Hg2+] [Br-]^2
assume the solubility S = X = 2.66 x 10^-7 M
and from the reaction equation :
we can see that [Hg2+] = X
and the [Br-] = 2 X
so by substitution in Ksp formula will can get the Ksp value:
∴ Ksp = X * (2X)^2
= 2.66 x 10^-7 * (2*2.66 x 10^-7)^2
= 7.53 x 10^-20