Answer:
0.925 atm
Explanation:
By Dalton's Law, the total pressure of a gas mixture is the sum of the partial pressure of its components. The vapor pressure of the water is the pressure that some molecules that evaporated do under the liquid surface. The gas and the liquid are at equilibrium. So, the gas mixture is water vapor and hydrogen gas.
Ptotal = Pwater + PH₂
745 = 42 + PH₂
PH₂ = 703 torr
Transforming to atm:
1 atm ------------------760 torr
x ------------------ 703 torr
By a simple direct three rule
760x = 703
x = 0.925 atm
Solids: have fixed shape and fixed volume
Liquids: have fixed volume
Gases: have neither fixed volume or fixed shape
This tells you that having a fixed shape is the most responsible characteristic of a solid's structure.
There are multiple answers to this question depending on what answer it's looking for. This is one of the right answers but I don't know if it's the one the question is looking for.
Probably not but I wouldn’t risk it
Answer:
D. because water and mud behaved in a similar way in the past as they do today
Explanation:
One of the fundamental theories in the field of earth science is the theory of uniformitarianism.
Uniformitarianism was proposed by James Hutton in the 18th century in Scotland. The theory states that "geologic processes occurring today have occurred in times past and that the present is the key to past".
The simple meaning of the theory is that, the processes on earth today such as weathering, erosion, e.t.c have also occurred in times past. Those processes still occur today and an understanding of such events today will help us have a better insight into the past.
Therefore, ripple marks just as they form today from action of mud and water would be formed in a similar way in the past.
<em>Calculate the pH of the following substances formed during a volcanic eruption:
</em>
<em>• Acid rain if the [H +] is 1.9 x 10-5
</em>
<em>• Sulfurous acid if [H +] = 0.10
</em>
<em>• Nitric acid if [H +] = 0.11</em>
<em />
<h3>Further explanation </h3>
pH is the degree of acidity of a solution that depends on the concentration of H⁺ ions. The greater the value the more acidic the solution and the smaller the pH.
pH = - log [H⁺]
![\tt pH=-log[1.9\times 10^{-5}]\\\\pH=5-log1.9\\\\pH=4.72](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1.9%5Ctimes%2010%5E%7B-5%7D%5D%5C%5C%5C%5CpH%3D5-log1.9%5C%5C%5C%5CpH%3D4.72)
![\tt pH=-log[10^{-1}]\\\\pH=1](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B10%5E%7B-1%7D%5D%5C%5C%5C%5CpH%3D1)
![\tt pH=-log[11\times 10^{-2}]\\\\pH=2-log~11=0.959](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B11%5Ctimes%2010%5E%7B-2%7D%5D%5C%5C%5C%5CpH%3D2-log~11%3D0.959)