The heat will flow from copper to aluminum because Cu is at higher temperature. The heat liberated is -7.60kJ
When two metals at different temperatures are kept in contact, heat flows from hotter metal to colder metal until thermal equilibrium is reached.
Here Copper is at a temperature of 60 degree Celsius and aluminum is at 40 degree Celsius. Thus, heat will flow from Cu to Al.
In order to calculate the amount of heat liberated following calculations are required.
m1=262 g
T1=87 oC
Cp=0.385 J/g oC
T2=11.8 oC
The heat liberated can be expressed as follows:
Q=mCp(T2-T1)
Q=262 g*0.385 J/goC(11.8-87)oC
Q=-7585 J
=-7.60kJ
To learn more about heat check the link below:
brainly.com/question/13439286
#SPJ4
Period are going left to right across the periodic table
Groups are going up to down on the periodic table
Answer:
Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Al + 3CuCl₂ → 3Cu + 2AlCl₃.</em>
- It is clear that 2.0 moles of Al foil reacts with 3.0 moles of CuCl₂ to produce 3.0 moles of Cu metal and 2.0 moles of AlCl₃.
- Also, we need to calculate the number of moles of the reported masses of Al foil (0.50 g) and CuCl₂ (0.75 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Al foil = mass / atomic mass = (0.50 g) / (26.98 g/mol) = 0.0185 mol.
- The no. of moles of CuCl₂ = mass / molar mass = (0.75 g) / (134.45 g/mol) = 5.578 x 10⁻³ mol.
- <em>From the stichiometry Al foil reacts with CuCl₂ with a ratio of 2:3.</em>
∴ 3.85 x 10⁻³ mol of Al foil reacts completely with 5.578 x 10⁻³ mol of CuCl₂ with <em>(2:3)</em> ratio and CuCl₂ is the limiting reactant while Al foil is in excess.
- From the stichiometry 3.0 moles of CuCl₂ will produce the same no. of moles of copper metal (3.0 moles).
- So, this reaction will produce 5.578 x 10⁻³ mol of copper metal.
- Finally, we can calculate the mass of copper produced using:
mass of Cu = no. of moles x Atomic mass of Cu = (5.578 x 10⁻³ mol)(63.546 g/mol) = 0.354459 g ≅ 0.36 g.
- <u><em>So, the answer is:</em></u>
<em>Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.</em>
Answer:
D
Explanation:
Protons and Neutrons both have a mass of about 1 amu so you add them but electrons have a mass of 0 amu so they are left out.