Answer:
λ = 1.1×10⁸ m
Explanation:
Given data:
Frequency of wave = 2.7 Hz
Wavelength of wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
Speed of wave = 3×10⁸ m/s
now we will put the values in formula.
3×10⁸ m/s = 2.7 s⁻¹ × λ
λ = 3×10⁸ m/s /2.7 s⁻¹
λ = 1.1×10⁸ m
Answer:
Scientific Question: ... I will boil water and add a substance like salt to see if the boiling point increases.
We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.
THE ANSWER IS: <u>737.5</u>
I JUST TOOK THE QUIZ!!!!
Answer : The volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml
Solution : Given,
Molarity of aqueous
solution = 1.20 M = 1.20 mole/L
Volume of aqueous
solution = 50.0 ml = 0.05 L
(1 L = 1000 ml)
Molarity of
stock solution = 4.9 M = 4.9 mole/L
Formula used :

where,
= Molarity of aqueous
solution
= Molarity of
stock solution
= Volume of aqueous
solution
= Volume of
stock solution
Now put all the given values in this formula, we get the volume of
stock solution.

By rearranging the term, we get

Therefore, the volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml