The chemical reaction between the reactants:
3 AgNO₃ (aq) + FeCl₃ (aq) → 3 AgCl (s) + Fe(NO₃)₃ (aq)
Explanation:
We have the following chemical reaction:
3 AgNO₃ (aq) + FeCl₃ (aq) → 3 AgCl (s) + Fe(NO₃)₃ (aq)
Complete ionic equation:
3 Ag⁺ (aq) + 3 NO₃⁻ (aq) + Fe³⁺ (aq) + 3 Cl⁻ (aq) → 3 AgCl (s) + Fe³⁺ (aq) + 3 NO₃⁻ (aq)
We remove the spectator ions and we get the net ionic equation:
Ag⁺ (aq) + Cl⁻ (aq) → AgCl (s)
where:
(aq) - aqueous
(s) - solid
Learn more about:
net ionic equation
brainly.com/question/7018960
#learnwithBrainly
Unfortunately the data provided doesn't include the DENSITY of the ammonium chloride solution and molarity is defined as moles per volume. So without the density, the calculation of the molarity is impossible. But fortunately, there are tables available that do provide the required density and for a 20% solution by weight, the density of the solution is 1.057 g/ml.
So 1 liter of solution will mass 1057 grams and the mass of ammonium chloride will be 0.2 * 1057 g = 211.4 g. The number of moles will then be 211.4 g / 53.5 g/mol = 3.951401869 mol. Rounding to 3 significant digits gives a molarity of 3.95.
Now assuming that your teacher wants you to assume that the solution masses 1.00 g/ml, then the mass of ammonium chloride will only be 200g, and that is only (200/53.5) = 3.74 moles.
So in conclusion, the expected answer is 3.74 M, although the correct answer using missing information is 3.95 M.
441 g CaCO₃ would have to be decomposed to produce 247 g of CaO
<h3>Further explanation</h3>
Reaction
Decomposition of CaCO₃
CaCO₃ ⇒ CaO + CO₂
mass CaO = 247 g
mol of CaO(MW=56 g/mol) :

From equation, mol ratio CaCO₃ : CaO = 1 : 1, so mol CaO :

mass CaCO₃(MW=100 g/mol) :

Answer:
infrared for longer and ultraviolet for shorter
Explanation:
let me now if right