Answer:
c. iron I hope it helped.....
(a) The speed of light in the unknown substance is determined 1.82 x 10⁸ m/s.
(b) The light will bend away from the normal since speed of light in air is not equal to speed of light in the substance.
<h3>What is the speed of light?</h3>
The speed of light passing from air into the substance is calculated as follows;
refractive index = speed of light in air / speed of light in the substance
speed of light in the substance = speed of light in air/refractive index
speed of light in the substance = (3 x 10⁸) / (1.65)
speed of light in the substance = 1.82 x 10⁸ m/s
Thus, the light will bend away from the normal since speed of light in air is not equal to speed of light in the substance.
Learn more about speed of light here: brainly.com/question/104425
#SPJ1
A specific combination of bonded atoms which always react in the same way, regardless of the particular carbon skeleton is known as the functional group. These are specific groups of atoms or bonds within organic molecules that accounts for the characteristic chemical reactions of those molecules. Examples of functional groups are the Carbonyl group, alkyl Halides, aldehydes and ketones among others.
Answer: c. ΔH˚ is positive and ΔS˚ is positive
Explanation:
According to Gibb's equation:

= Gibbs free energy
= enthalpy change
= entropy change
T = temperature in Kelvin
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
Thus for 
Case :
> 
when
both have positive values.


Reaction is spontaneous only at at high temperatures.
Firstly, we need to convert 3g aspartame into moles aspartame. In order to do this we have to find the molecular mass of aspartame (the total weight of each atom of the molecule combined. This figure can be used to construct a conversion factor so that the grams may be converted into moles. Molecular weights for each atom can be found on any periodic table. Avagadro's number (6.022*10^23) is a constant value that expresses the number of molecules in one mole of a substance.
The molecular weight for aspartame is 294.3 grams per mole.
The process of finding how many atoms of H there are in 3.00g of aspartame would be like this:
1. 3g * 1mol/294.3g = .01mol aspartame (this is converting grams to moles)
2. .01mol * 6.022*10^23 = 6.022*10^21 (This is finding the number of molecules)
3. (6.022*10^21) * 18 = 1.08*10^23
This 3rd calculation is done because in part 2, you calculated the number of molecules of aspartame there were in 3g. In each molecule of aspartame there are 18 hydrogen atoms. So the final answer is:
1.08*10^23 hydrogen atoms.