- The opposite sides are parallel and congruent. - The diagonals bisect each other.
- There are 4 right angles. - The diagonals are congruent.
- Show that both pairs of opposite sides are congruent.
Answer:
point - slope form
y - 1 = 3 (x-0)
Step-by-step explanation:
<u><em>step(i):-</em></u>
Given points are (0,1) and (2,7)
The slope of the line


m =3
<u><em>Step(ii):-</em></u>
point -slope form
y - y₁ = m(x-x₁)
Equation of the straight line passing through the point (0,1) and having slope 'm' = 3
y - 1 = 3 (x-0)
y -1 = 3x
3x - y +1=0
Equation of the straight line passing through the point (0,1) and having slope 'm' = 3 is 3x -y +1=0
Complete question :
Cheddar Cheese
$3/lb
Swiss Cheese
$5/lb
Keisha is catering a luncheon. She has $30 to spend on a mixture of Cheddar cheese and Swiss cheese. How many pounds of cheese can Keisha get if she buys only Cheddar cheese? Only Swiss cheese? A mixture of both cheeses?
What linear equation in standard form can she use to model the situation?
Answer:
10 lbs of cheddar cheese
6 lbs of Swiss cheese
$3a + $5b = $30
Step-by-step explanation:
Given that :
Cheddar cheese = $3/lb
Swiss cheese = $5/lb
Total amount budgeted for cheese = $30
How many pounds of cheese can Keisha get if she buys only Cheddar cheese?
Pounds of cheedar cheese obtainable with $30
Total budget / cost per pound of cheddar cheese
$30 / 3 = 10 pounds of cheedar cheese
Only Swiss cheese?
Pounds of cheedar cheese obtainable with $30
Total budget / cost per pound of Swiss cheese
$30 / 5 = 6 pounds of Swiss cheese
A mixture of both cheeses?
What linear equation in standard form can she use to model the situation?
Let amount of cheddar cheese she can get = a
Let amount of Swiss cheese she can get = b
Hence,
(Cost per pound of cheddar cheese * number of pounds of cheddar) + (Cost per pound of Swiss cheese * number of pounds of Swiss cheese) = total budgeted amount
(3 * a) + (5 * b) = $30
$3a + $5b = $30
The median is the middle-most number. First we need to put the numbers in order from lowest to highest:
81 84 88 94 94 96
The easiest way to find the median is to cross out the first and last number and then continue until you reach the middle.
So cross out 81 and 96:
84 88 94 94 are left.
Cross out 84 and 94:
88 and 94 are left.
Since we are left with 2 different numbers, we need to find the average of them and that’s our median. (88 + 94)/2 = 91
91 is the median.