Answer:

Explanation:
Hello!
In this case, since the energy implied in a heating process is computed by using the following equation:

Whereas m is the mass, C the specific heat and T the temperature. In such a way, by plugging in the given mass, specific heat and temperatures, we obtain the following energy:

Considering that the specific heat can by used by unit of °C or K because their difference is equivalent.
Regards!
Answer:
0.11%
Explanation:
Without mincing words, let us dive straight into the solution to the question/problem. The first step to solve this question is to write out the chemical reaction, that is the reaction showing the dissociation of acetic acid.
CH3COOH <=======================================> CH3COO⁻ + H⁺
Initially, the amount present in the acetic acid which is = 12M, the concentration for CH3COO⁻ and H⁺ is 0 respectively.
At equilibrium, the amount present in the acetic acid which is = 12 - x, the concentration for CH3COO⁻ = x and H⁺ = x respectively. Note that the ka for acetic acid = 1.8 × 10⁻⁵.
1.8 × 10⁻⁵ = x²/ 14 - x. Therefore, x = 0.0158 M.
The next thing to do is to calculate for the percentage of dissociation, this can be done as given below:
percentage of dissociation = x/14 × 100. Recall that the value that we got for x = 0.0158 M. Hence, the percentage of dissociation = 0.0158 M/ 14m × 100 = 0.11%
This is called a climax community.
Answer:
1. Mass of potassium (K) = 203.32 g
2. Number of mole of As = 7.53 moles
Explanation:
1. Determination of the mass of potassium (K)
Molar mass of K = 39.1 g/mol
Number of mole of K = 5.2 moles
Mass of K =.?
Mole = mass / Molar mass
5.2 = mass of K / 39.1
Cross multiply
Mass of K = 5.2 × 39.1
Mass of potassium (K) = 203.32 g
2. Determination of the number of mole of Arsenic (As)
Molar mass of As = 74.92 g/mol
Mass of As = 563.9 g
Number of mole of As =.?
Mole = mass /Molar mass
Number of mole of As = 563.9 / 74.92
Number of mole of As = 7.53 moles
answer: Surface water in nearby areas can become polluted.
Explanation: