Answer:
There is a relationship between the strength of an acid (or base) and the strength of its conjugate base (or conjugate acid): The stronger the acid, the weaker its conjugate base. The weaker the acid, the stronger its conjugate base. The stronger the base, the weaker its conjugate acid.
explanation
The strength of an acid and a base is determined by how completely they dissociate in water. Strong acids (like stomach acid) break down or dissociate in water. Weak acids maintains their protons in water.
The experiment involving the determination of the number of ice cubes required to keep the temperature of the glass under 15 degrees Celcius, the following things have to be kept in mid:
- The<u> temperature</u> of the surroundings
- The initial temperature of the <u>glass</u>
- The <u>number of ice cubes </u>added to the water in the glass
In order to keep into consideration the changing environmental temperatures (which is a variable in the experiment), the experiment had to be conducted daily to get <u><em>accurate results </em></u>keeping into consideration all the factors.
brainly.com/question/11256472
If you're looking for "what rocks are formed by changes..." it's Igneous Rocks.
Answer:
Option D. 30 g
Explanation:
The balanced equation for the reaction is given below:
2Na + S —> Na₂S
Next, we shall determine the masses of Na and S that reacted from the balanced equation. This is can be obtained as:
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of S = 32 g/mol
Mass of S from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Finally, we shall determine the mass sulphur, S needed to react with 43 g of sodium, Na. This can be obtained as follow:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Therefore, 43 g of Na will react with = (43 × 32)/46 = 30 g of S.
Thus, 30 g of S is needed for the reaction.