Answer:
E) Intramolecular bond angles change
Explanation:
Infrared Radiation:
IR is electromagnetic radiations. The wavelength i.e. 700nm to 1000 mm of infrared is longer than invisible light and Its frequency is lower than light, that's why it is invisible to light.
- When IR radiation strike the molecule it absorbed by this molecule.
- This radiation used to identify and study chemicals.
- Infrared radiation interact with intra-bonds of the molecule.
- Bonds in the molecules have vibrational translational and rotational movements
- Due to these vibration, rotation and translation movement it absorb a radiation of specific frequency and wavelength
- These movements of bond are very small and absorbs radiations of very low frequency
- So when Infrared light or radiation absorbed the intra-bonds of the molecule get affected and angles of these bonds changes.
- As the frequency of the absorbed radiation matches the frequency of the bond that vibrates.
So
The correct option is option E
E) Intramolecular bond angles change
* Note:
it couldn't be option A as the frequency of IR is not enough to rotate a whole molecule
It Couldn't be option B as IR rations are electromagnetic radiation of longer wave length so it one can not see it with light so how it will glow a molecule
It also not could be the option C as for the excitation of electrons require much higher energy.
It also not the option D as nuclear magnetic spin is associated with nuclear magnetic radiation that are much different from IR.
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:
The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.
Answer:
Explanation:
Name Zinc
Atomic Mass 65.39 atomic mass units
Number of Protons 30
Number of Neutrons 35
Number of Electrons 30