Explanation:
According to Buoyance equation,
m = ![[m' \times \frac{1 - \frac{d_{a}}{d_{w}}}{1 - \frac{d_{a}}{d}}]](https://tex.z-dn.net/?f=%5Bm%27%20%5Ctimes%20%5Cfrac%7B1%20-%20%5Cfrac%7Bd_%7Ba%7D%7D%7Bd_%7Bw%7D%7D%7D%7B1%20-%20%5Cfrac%7Bd_%7Ba%7D%7D%7Bd%7D%7D%5D)
where, m = true mass
m' = mass read from the balance = 17.320 g
= density of air = 0.0012 g/ml
= density of the balance = 7.5 g/ml
d = density of liquid octane = 0.7025 g/ml
Now, putting all the given values into the above formula and calculate the true mass as follows.
m =
= ![[17.320 g \times \frac{1 - \frac{0.0012 g/ml}{7.5 g/ml}}{1 - \frac{0.0012 g/ml}{0.7025}}]](https://tex.z-dn.net/?f=%5B17.320%20g%20%5Ctimes%20%5Cfrac%7B1%20-%20%5Cfrac%7B0.0012%20g%2Fml%7D%7B7.5%20g%2Fml%7D%7D%7B1%20-%20%5Cfrac%7B0.0012%20g%2Fml%7D%7B0.7025%7D%7D%5D)
=
= 17.317 g
Thus, we can conclude that the true mass of octane is 17.317 g.
Answer:

Explanation:
Hello,
In this case, given the temperature, volume and total pressure, we can compute the total moles by using the ideal gas equation:

Next, using the molar fraction of argon, we compute the moles of argon:

And the moles of methane:

Now, by using the molar masses of both argon and methane, we can compute the mass percent of argon:

Regards.
Hope this answers your question Mariaduong159
Radiometric Dating. It's used to find the dates of ricks and other objects based on what the known decay rate of radioactive isotopes. Different forms of this method can also estimate the age of natural and man-made materials.
Answer:
F < O < Cl
Explanation:
Fluorine has a greater effective nuclear charge than oxygen does, meaning that the electrons are drawn tighter and closer toward the nucleus. Fluorine has 9 protons and 9 electrons while oxygen only has 8 protons and electrons. Chlorine has a larger atomic radius than both fluorine and chlorine because has another energy level (shell). Although chlorine has the same effective nuclear charge as fluorine, chlorine has more electrons, 17, which requires an additional shell to contain them.