Answer:
it depends upon a his body which antigen is present
Explanation:
it depends on that person not on their parents
Answer:
kp= 3.1 x 10^(-2)
Explanation:
To solve this problem we have to write down the reaction and use the ICE table for pressures:
2SO2 + O2 ⇄ 2SO3
Initial 3.4 atm 1.3 atm 0 atm
Change -2x - x + 2x
Equilibrium 3.4 - 2x 1.3 -x 0.52 atm
In order to know the x value:
2x = 0.52
x=(0.52)/2= 0.26
2SO2 + O2 ⇄ 2SO3
Equilibrium 3.4 - 0.52 1.3 - 0.26 0.52 atm
Equilibrium 2.88 atm 1.04 atm 0.52 atm
with the partial pressure in the equilibrium, we can obtain Kp.

Answer is: 1160 J of heat Is required to increase the temperature.
m(Fe) = 100 g.
∆T = 40,2 - 15 = 25,2°C.
C(Fe) = 0,46 J/g•°C.
Q = m(Fe) • C • ∆T.
Q = 100 g • 0,46 J/g•°C • 25,2°C
Q = 1160 J.
C - specific heat.
Answer:
32.1 g
Explanation:
Step 1: Write the balanced combustion reaction
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 97.4 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
97.4 g × 1 mol/44.01 g = 2.21 mol
Step 3: Calculate the moles of butane that produced 2.21 moles of carbon dioxide
The molar ratio of C₄H₁₀ to CO₂ is 1:4. The moles of C₄H₁₀ required are 1/4 × 2.21 mol = 0.553 mol
Step 4: Calculate the mass corresponding to 0.553 moles of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
0.553 mol × 58.12 g/mol = 32.1 g
I think the answer is D not too sure tho