Answer:
The answer to your question is:
Explanation:
a)
Metals: are shiny, malleable and ductile, they can conduct electricity and heat, form cations in aqueous solutions.
Nonmetals: non-lustrous, brittle, not good conductors of heat and electricity, form anions in aqueous solutions.
b)
Metals are located in the left side of the periodic table
Nonmetals are located in the right side of the periodic table.
c)
Metal are use to make pans because they are good conductors of heat and also are malleable and ductile.
Nonmetals are used to make sleeping bags and coolers because they do not conduct heat so they can isolate matter.
STP stands for standard temperature and pressure. Standard pressure is equivalent to 1 atm, and standard temperature is equivalent to 273.15 K. Therefore, your answer is A. the temperature is 273.15 kelvin.
Hope this helps!
Explanation:
Given
The enthalpy of formation of RbF (s) is –557.7kJ/mol
The standard enthalpy of formation of RbF (aq, 1 m) is –583.8 kJ/mol
The enthalpy of solution of RbF = Enthalpy of RbF (aq) - Enthalpy of formation of RbF (s)
= -583.8 - (-557.7) kJ/mol
= -26.1 kJ/mol
The enthalpy is negative which means that the temperature will rise when RbF is dissolved.
Answer:
25.8
Explanation:
Let's write the reaction between magnesium-phosphide and potassium:
Mg3P2 + K = Mg + K3P
And now let's balance this equation:
Mg3P2+6K=3Mg+2K3P
We see that the ratio of magnesium-phosphide and potassium is 1:6, which means that for every mole of magnesium-phosphide there need to be 6 moles of potassium.
Since we have 4.3 moles of Mg3P2, there need to be 6 • 4.3 = 25.8 moles of potassium.
Answer:
A reduction potential measures the tendency of a molecule to be reduced by taking up new electrons. ... Standard reduction potentials can be useful in determining the directionality of a reaction. The reduction potential of a given species can be considered to be the negative of the oxidation potential.
Explanation: