Answer:
- m = 1,000/58.5
- b = - 1,000 / 58.5
1) Variables
- molarity: M
- density of the solution: d
- moles of NaCl: n₁
- mass of NaCl: m₁
- molar mass of NaCl: MM₁
- total volume in liters: Vt
- Volume of water in mililiters: V₂
- mass of water: m₂
2) Density of the solution: mass in grams / volume in mililiters
3) Mass of NaCl: m₁
Number of moles = mass in grams / molar mass
⇒ mass in grams = number of moles × molar mass
m₁ = n₁ × MM₁
4) Number of moles of NaCl: n₁
Molarity = number of moles / Volume of solution in liters
M = n₁ / Vt
⇒ n₁ = M × Vt
5) Substitue in the equation of m₁:
m₁ = M × Vt × MM₁
6) Substitute in the equation of density:
d = [M × Vt × MM₁ + m₂] / (1000Vt)
7) Simplify and solve for M
- d = M × Vt × MM₁ / (1000Vt) + m₂/ (1000Vt)
- d = M × MM₁ / (1000) + m₂/ (1000Vt)
Making the simplistic assumption that the dissolved NaCl(s) does not affect the volume of the solvent water means 1000Vt = V₂
- d = M × MM₁ / (1000) + m₂/ V₂
m₂/ V₂ is the density of water: 1.00 g/mL
- d = M × MM₁ / (1000) + 1.00 g/mL
- M × MM₁ / (1000) = d - 1.00 g/mL
- M = [1,000/MM₁] d - 1,000/ MM₁
8) Substituting MM₁ = 58.5 g/mol
- M = [1,000/58.5] d - [1,000/ 58.5]
Comparing with the equation Molarity = m×density + b, you obtain:
- m = 1,000/58.5
- b = - 1,000/58.5
It is actually something standardized more so than theoretical, however in terms of atoms in general the electrons are based on the amount of electronic shells that an atom has and the amount of electrons that atom can accommodate. In the case of sodium, it has three shells with 2 electrons on the first shell which is the maximum, 8 on the second shell which is also the max and 1 on their final shell
So simply put an ATOM of Sodium (Na) has 23 electrons because it has 23 protons which is a fact
<span />
I believe I know the answer to #4
ANSWER: Two moles to a first approximation
*Disclaimer* I'm pretty sure I'm right, but I could be wrong
Answer:
CH3CH3CH2CH3
Explanation:
Octane is a non-polar compound. It is a hydrocarbon with 8-carbon length along its chain.
It belongs to a special group of hydrocarbons called alkanes.
What makes a substance soluble in another?
It is a common phrase that "like dissolves like". This is applicable to solubility of substances in another.
- A polar solvent will freely and easily dissolve a polar solute. For example, water and salt.
- A non-polar solvent will also dissolve a non-polar solute. This case, hydrocarbons will dissolve themselves.
- The first option is a butane, a 4-carbon length hydrocarbon which will be dissolved in octane.
- Both compounds are non-polar.