Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>
Answer:
0.29 moles of PbCl₂
Explanation:
Given data:
Mass of lithium chloride = 24.3 g
Moles of PbCl₂ = ?
Solution:
Chemical equation;
PbSO₄ + 2LiCl → PbCl₂ + Li₂SO₄
Number of moles of LiCl:
Number of moles = mass/ molar mass
Number of moles = 24.3 g/ 42.394 g/mol
Number of moles = 0.57 mol
Now we will compare the moles of PbCl₂ with LiCl .
LiCl : PbCl₂
2 : 1
0.57 : 1/2×0.57 = 0.29 mol
There are some exceptions to the rule organisms such as a protist called a euglena can be both heterotrophic and autotrophic. This is a true statement.
Explanation:
- Euglena is a large genus of unicellular protists: they have both plant and animal characteristics
- Photoautotrophs include protists that have chloroplasts, such as Spirogyra. Heterotrophs get their energy by consuming other organisms. Other protists can get their energy both from photosynthesis and from external energy sources
- All live in water and move by means of a flag ellum. This is an animal characteristic. Most have chloroplasts, which are characteristic of algae and plants
- Euglena is photosynthetic in the presence of sunlight i.e autotrophic, when deprived of sunlight they behave like heterotrophs by predating on other smaller organisms.
- Most species of Euglena have photosynthesizing chloroplasts within the body of the cell, which enable them to feed by autotrophy, like plants. They can also take nourishment heterotrophically, like animals.
The electronic configuration of Lv element is
.
The electronic configuration of
is
.
<h3>What is electronic configuration?</h3>
Electronic configuration, also called electronic structure, is the arrangement of electrons in energy levels around an atomic nucleus.
And also the possible union with hydrogen can give two possible compounds:

This is because the Livermorio compound can have two different oxidation states with the values 2 and 4. When reacting with the hydrogen that its charge is +1, these would be the two possible equations of a client to the different oxidation states with the ones that might react Lv.
It is a synthetic chemical compound and its number in the periodic table is 116.
Learn more about electronic configuration here:
brainly.com/question/13497372
#SPJ1