Answer:
Total percent of magnesium in sample = 25.5%
Explanation:
Given:
Mass of magnesium = 24 gram
Mass of chlorine = 70 gram
Find:
Total percent of magnesium in sample = ?
Computation:
Total mass of sample = Mass of magnesium + Mass of chlorine
Total mass of sample = 24 gram + 70 gram
Total mass of sample = 94 gram
Total percent of magnesium in sample = [Mass of magnesium / Total mass of sample]100
Total percent of magnesium in sample = [24/94]100
Total percent of magnesium in sample = [0.255]100
Total percent of magnesium in sample = 25.5%
Its the other way around actually. Benzoic acid is stronger than acetic acid because the electron-donating inductive effect (+I) by the alkyl group on acetic acid destabilise the conjugate base of acetic acid.
hope this helps :)
Answer:
there is one carbon atom and there are two oxygen atoms. So, in total there are three atoms.
Explanation:
This problem is providing the heating curve of ethanol showing relevant data such as the initial and final temperature, melting and boiling points, enthalpies of fusion and vaporization and specific heat of solid, liquid and gaseous ethanol, so that the overall heat is required and found to be 1.758 kJ according to:
<h3>Heating curves:</h3>
In chemistry, we widely use heating curves in order to figure out the required heat to take a substance from a temperature to another. This process may involve sensible heat and latent heat, when increasing or decreasing the temperature and changing the phase, respectively.
Thus, since ethanol starts off solid and end up being a vapor, we will find five types of heat, three of them related to the heating-up of ethanol, firstly solid, next liquid and then vapor, and the other two to its fusion and vaporization as shown below:

Hence, we begin by calculating each heat as follows, considering 1 g of ethanol is equivalent to 0.0217 mol:
![Q_1=0.0217mol*111.5\frac{J}{mol*\°C}[(-114.1\°C)-(-200\°C)] *\frac{1kJ}{1000J} =0.208kJ\\ \\ Q_2=0.0217mol*4.9\frac{kJ}{mol} =0.106kJ\\ \\ Q_3=0.0217mol*112.4\frac{J}{mol*\°C}[(78.4\°C)-(-114.1\°C)] *\frac{1kJ}{1000J} =0.470kJ\\ \\ Q_4=0.0217mol*38.6\frac{kJ}{mol} =0.838kJ\\ \\ Q_5=0.0217mol*87.5\frac{J}{mol*\°C}[(150\°C)-(78.4\°C)] *\frac{1kJ}{1000J} =0.136kJ](https://tex.z-dn.net/?f=Q_1%3D0.0217mol%2A111.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28-114.1%5C%C2%B0C%29-%28-200%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.208kJ%5C%5C%0A%5C%5C%0AQ_2%3D0.0217mol%2A4.9%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.106kJ%5C%5C%0A%5C%5C%0AQ_3%3D0.0217mol%2A112.4%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%2878.4%5C%C2%B0C%29-%28-114.1%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.470kJ%5C%5C%0A%5C%5C%0AQ_4%3D0.0217mol%2A38.6%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.838kJ%5C%5C%0A%5C%5C%0AQ_5%3D0.0217mol%2A87.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28150%5C%C2%B0C%29-%2878.4%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.136kJ)
Finally, we add them up to get the result:

Learn more about heating curves: brainly.com/question/10481356
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.