Answer:
<u>According </u><u>to </u><u>second </u><u>law </u><u>of </u><u>motion</u><u>,</u><u>t</u><u>he acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.</u>
<em>So </em><em>simply</em><em>,</em><em> </em><em>it </em><em>can </em><em>be </em><em>affected </em><em>due </em><em>to </em><em>increasing </em><em>force </em><em>as </em><em>there </em><em>is </em><em>close </em><em>relationship </em><em>between </em><em>momentum.</em>
Explanation:
<em>The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.</em>
<em>I </em><em>hope </em><em>it </em><em>was </em><em>helpful </em><em>for </em><em>you </em><em>:</em><em>)</em>
Answer:
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.
normal force because it is perpendicular to the surface
Answer:
Star A is closer than Star B
Explanation:
As we know that in parallax method of distance measurement the angle subtended by the star when it covers a distance of one Parsec arc length, it is known as parallax angle
Here we can say

so we have

so here we have
angle subtended by Star A = 1 arc sec
angle subtended by star B = 0.75 arc sec
now we have
distance for star A is given as

distance of star B is given as

So star A is closer than star B