Answer:
Explanation:
Displacement can be displayed as a vector, this because it has magnitud and direction. Because of this, we can think John's Resultant Displacement as the join of this two vectors.
The First Vector is from the 249 Km Marker to the 141 Km Marker, which give us a Vector with a Magnitude equals to 108 Km.
The Second Vector goes from 141 Km Marker to the 174 Km Marker, which give us a Vector with a Magnitude equals to 33 Km.
However is important to know the direction for each Vector, we notice that John was traveling on one direction and then he returned. This makes our Vector to have a different direction, and this means difference signs. Difference signs means substraction. So, the Third Vector will be:
Third Vector = 108 Km - 33 Km
Third Vector = 75 Km
Cats have tails to help their balance. Similar to the stick a trapeze/high wire walker uses.
The tail helps to serve as a counterbalance when cats walk on narrow spaces such as fences or shelves. The tail also aids in balance when a cat is running after or jumping on prey.
Just so you know....Cats can live without tails.
Answer:
FALSE
Explanation:
Velocity = speed with direction.
Think of speed and direction like rockets and missiles. Rockets are not smart. Missiles are smart. Rockets go in one direction. Missiles can track their targets, they have a specific destination, a specific direction.
Velocity is often used in physics, because its almost useless to know how fast an object is going if you don't know which direction it is going.
Think of it like this. If the Weather man told you a hurricane was traveling at 30 miles an hour, but didn't tell you which direction it was going, you would have no idea where to run, or if it was going to hit you at all. However, if he told you it was going 30 miles an hour to the North, and you were West of it, you would be fine, and wouldn't have to worry.
Answer:
a) 1.6*10^6 V
b) 13.35*10^6 V
Explanation:
The electric potential at origin is the sum of the contribution of the two charges. You use the following formula:
(1)
q1 = 3.90µC = 3.90*10^-6 C
q2 = -2.4µC = -2.4*10^-6 C
r1 = 1.25 cm = 0.0125 m
r2 = -1.80 cm = -0.018 m
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
You replace all the parameters in the equation (1):
![V=k[\frac{q_1}{r_1}+\frac{q_2}{r_2}]\\\\V=(8.98*10^9Nm^2/C^2)[\frac{3.90*10^{-6}C}{0.0125m}+\frac{-2.4*10^{-6}C}{0.018m}]=1.6*10^6V](https://tex.z-dn.net/?f=V%3Dk%5B%5Cfrac%7Bq_1%7D%7Br_1%7D%2B%5Cfrac%7Bq_2%7D%7Br_2%7D%5D%5C%5C%5C%5CV%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5B%5Cfrac%7B3.90%2A10%5E%7B-6%7DC%7D%7B0.0125m%7D%2B%5Cfrac%7B-2.4%2A10%5E%7B-6%7DC%7D%7B0.018m%7D%5D%3D1.6%2A10%5E6V)
hence, the total electric potential is approximately 1.6*10^6 V
b) For the coordinate (1.50 cm , 0) = (0.015 m, 0) you have:
r1 = 0.0150m - 0.0125m = 0.0025m
r2= 0.015m + 0.018m = 0.033m
Then, you replace in the equation (1):
![V=(8.98*10^9Nm^2/C^2)[\frac{3.90*10^{-6}C}{0.0025m}+\frac{-2.4*10^{-6}C}{0.033m}]=13.35*10^6V](https://tex.z-dn.net/?f=V%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5B%5Cfrac%7B3.90%2A10%5E%7B-6%7DC%7D%7B0.0025m%7D%2B%5Cfrac%7B-2.4%2A10%5E%7B-6%7DC%7D%7B0.033m%7D%5D%3D13.35%2A10%5E6V)
hence, for y = 1.50cm you obtain V = 13.35*10^6 V
Answer:
9 Nm
Explanation:
The formula for torque is;
τ = lever arm * force applied
τ = 30/100 * 30
τ = 9 Nm