14. 1.5, 10 <- Answer
15. 5,1 <- Answer
Proof 14
Solve the following system:
{2 x - y = -7 | (equation 1)
4 x - y = -4 | (equation 2)
Swap equation 1 with equation 2:
{4 x - y = -4 | (equation 1)
2 x - y = -7 | (equation 2)
Subtract 1/2 × (equation 1) from equation 2:
{4 x - y = -4 | (equation 1)
0 x - y/2 = -5 | (equation 2)
Multiply equation 2 by -2:
{4 x - y = -4 | (equation 1)
0 x+y = 10 | (equation 2)
Add equation 2 to equation 1:
{4 x+0 y = 6 | (equation 1)
0 x+y = 10 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 3/2 | (equation 1)
0 x+y = 10 | (equation 2)
Collect results:
Answer: {x = 1.5
y = 10
Proof 15.
Solve the following system:
{5 x + 7 y = 32 | (equation 1)
8 x + 6 y = 46 | (equation 2)
Swap equation 1 with equation 2:
{8 x + 6 y = 46 | (equation 1)
5 x + 7 y = 32 | (equation 2)
Subtract 5/8 × (equation 1) from equation 2:{8 x + 6 y = 46 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Divide equation 1 by 2:
{4 x + 3 y = 23 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Multiply equation 2 by 4/13:
{4 x + 3 y = 23 | (equation 1)
0 x+y = 1 | (equation 2)
Subtract 3 × (equation 2) from equation 1:
{4 x+0 y = 20 | (equation 1)
0 x+y = 1 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 5 | (equation 1)
0 x+y = 1 | (equation 2)
Collect results:
Answer: {x = 5 y = 1
Answer:
i think 5 is the right answer
Answer: 1st one
Step-by-step explanation:
Drawing this square and then drawing in the four radii from the center of the cirble to each of the vertices of the square results in the construction of four triangular areas whose hypotenuse is 3 sqrt(2). Draw this to verify this statement. Note that the height of each such triangular area is (3 sqrt(2))/2.
So now we have the base and height of one of the triangular sections.
The area of a triangle is A = (1/2) (base) (height). Subst. the values discussed above, A = (1/2) (3 sqrt(2) ) (3/2) sqrt(2). Show that this boils down to A = 9/2.
You could also use the fact that the area of a square is (length of one side)^2, and then take (1/4) of this area to obtain the area of ONE triangular section. Doing the problem this way, we get (1/4) (3 sqrt(2) )^2. Thus,
A = (1/4) (9 * 2) = (9/2). Same answer as before.
Answer:
math w a y .com
Step-by-step explanation: