1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
6

(x+2/x-7) - (x^2+4x+13/x^2-4x-21)

Mathematics
2 answers:
olya-2409 [2.1K]3 years ago
7 0

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

allochka39001 [22]3 years ago
6 0

Step-by-step explanation:

( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) \\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 7x  + 3x- 21} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{x( {x}  - 7)  + 3(x- 7)} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} )\\  \\  = ( \frac{(x + 2)(x + 3)}{(x - 7)(x + 3)})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} ) \\ \\  =  \frac{x^{2}  + 5x + 6}{(x - 7)(x + 3)}  - \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)}  \\ \\  =  \frac{x^{2}  + 5x + 6 - ({x}^{2} + 4x + 13  \: )}{(x - 7)(x + 3)}  \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}   \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}  \\  \\ =  \frac{ x  - 7\: }{(x - 7)(x + 3)} \\  \\ =  \frac{ 1}{(x + 3)}   \\  \\   \purple{ \boxed{\therefore( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) = \frac{ 1}{(x + 3)}}} \\  \\

You might be interested in
Exterior of scalene triangle sides are 25 and 15 and x. solve x.
Lyrx [107]

-- All three sides of a scalene triangle have different lengths.
So 'x' can't be 15 and it can't be 25.

-- 'x' must be 10 or more in order to reach between the ends
of the 25 and the 15.

-- 'x' must be less than 40 in order for the 25 and the 15 to reach
between its ends. 

So the value of 'x' must satisfy these conditions:

<em>0 < x < 15</em>
<em>15 < x < 25</em>
<em>25 < x < 40</em>

Any number that satisfies these conditions is an acceptable value for 'x'.


5 0
3 years ago
Read 2 more answers
£3.50= %of£10 answer this question i raelly dont get it in any way
ziro4ka [17]
\dfrac{\pounds 3.50}{\pounds10}\cdot100\%=\\&#10;0.35\cdot100\%=\\&#10;35\%
3 0
3 years ago
Kelly can type 120 words in 3 minutes. at that ate, how many words can she type in 5 minutes?
madam [21]
\frac{120\ \text{words}}{3\ \text{minutes}} = \frac{40\ \text{words}}{1\ \text{minute}}

\frac{40\ \text{words}}{1\ \text{minute}} \times \frac{5}{5} = \frac{200\ \text{words}}{5\ \text{minutes}}

Kelly can type 200 words in five minutes.
5 0
3 years ago
Which interval would not be used for the stems of a stem-and-leaf plot? 10 100 1 5
IrinaK [193]
100 because that just isn’t possible
5 0
3 years ago
The coastline of the US is 12,383 miles long. Canada's coastline is 113,211 miles longer than the coastline of the US. How long
Vanyuwa [196]
I'm assuming this is just a simple addition problem so 12,383 miles plus 113,211 miles is equal to 125 594 miles
8 0
4 years ago
Other questions:
  • What is this expression in simplest form.(-11/2x+3)-2(-11/4x-5/2)​
    11·1 answer
  • Using synthetic division, what is the quotient (3x3 + 4x − 32) ÷ (x − 2)?
    5·2 answers
  • What is the measure of what is the measure of (either 50,90,95, or 115)
    8·1 answer
  • A regular octagon rotates 360° about its center. How many times does the image of the octagon coincide with the preimage during
    9·2 answers
  • Which expression can be used to find the difference of the polynomials?
    10·1 answer
  • Find the length of side x in simplest radical form with a rational denominator
    6·1 answer
  • What is 13/20 as a part to part ratio
    7·1 answer
  • The oz of cheese goes with 8 oz of pasta. How much cheese is used for 3 oz of pasta?
    11·1 answer
  • How do I find the value of x??
    8·1 answer
  • Prove these identities <br>(i) secx cosecx - cotx = tanx<br>​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!