1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
2 years ago
6

(x+2/x-7) - (x^2+4x+13/x^2-4x-21)

Mathematics
2 answers:
olya-2409 [2.1K]2 years ago
7 0

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

allochka39001 [22]2 years ago
6 0

Step-by-step explanation:

( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) \\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 7x  + 3x- 21} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{x( {x}  - 7)  + 3(x- 7)} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} )\\  \\  = ( \frac{(x + 2)(x + 3)}{(x - 7)(x + 3)})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} ) \\ \\  =  \frac{x^{2}  + 5x + 6}{(x - 7)(x + 3)}  - \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)}  \\ \\  =  \frac{x^{2}  + 5x + 6 - ({x}^{2} + 4x + 13  \: )}{(x - 7)(x + 3)}  \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}   \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}  \\  \\ =  \frac{ x  - 7\: }{(x - 7)(x + 3)} \\  \\ =  \frac{ 1}{(x + 3)}   \\  \\   \purple{ \boxed{\therefore( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) = \frac{ 1}{(x + 3)}}} \\  \\

You might be interested in
What's 8subtract 2 over 3
torisob [31]
To subtract fractions, find the LCD and then combine.
Exact form:
22/3

3 0
3 years ago
20 POINT!!!!!!!11PLEASE HELP!!!!!
Vera_Pavlovna [14]

Answer:

14 millimeters

Step-by-step explanation:

V=(4/3)πr³

1372π(1/3)=(4/3)πr³

1372=4r³        <em>(cancel out the pi and multiply both sides by 3)</em>

r³=343

r=7

Diameter is twice the radius = 2(7) = 14

8 0
2 years ago
Read 2 more answers
How do you simplify 4+6(7x+7)
12345 [234]
<span>4+6(7x+7)
= 4 + 42x + 42
= 42x + 46

hope it helps</span>
3 0
3 years ago
Read 2 more answers
Graph ordered triples A(-4,7,3)
atroni [7]

Answer:

I REALLY NEED POINTSSSSSSSSSSS

Step-by-step explanation:

PLEASEEEEEEE

6 0
3 years ago
What type of triangle is this?
Luba_88 [7]
Acute and right i think
7 0
2 years ago
Read 2 more answers
Other questions:
  • A class of 30 students took midterm science exams. 20 students passed the chemistry exam, 14 students passed physics, and 6 stud
    10·2 answers
  • Can someone help me with this? please​
    7·1 answer
  • The length of a rectangle is 1 cm less than the width. The area of the rectangle is 12 cm². determine the dimensions of the rect
    8·1 answer
  • Helene, a hiker, starts at an elevation of 27 feet above sea level and descends 32 feet during her hike to base camp. Which desc
    9·1 answer
  • Tessa measured an apartment and made a scale drawing. She used the scale 7 millimeters = 3 meters. What is the scale factor of t
    7·1 answer
  • Given that x:y=5:1 find 4x+5y:3x
    11·1 answer
  • Xin answered 182 questions correctly on her multiple choice math final that had a
    9·1 answer
  • If right I’ll mark brainlest
    9·1 answer
  • What is the Range of the following?<br> (-00,00)<br> (-00,9)<br> [-5,4]<br> [-4.9]
    9·1 answer
  • A 13km stretch of road needs repairs. Workers can repair 3 1/2 km of road per week.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!