1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
2 years ago
6

(x+2/x-7) - (x^2+4x+13/x^2-4x-21)

Mathematics
2 answers:
olya-2409 [2.1K]2 years ago
7 0

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

allochka39001 [22]2 years ago
6 0

Step-by-step explanation:

( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) \\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 7x  + 3x- 21} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{x( {x}  - 7)  + 3(x- 7)} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} )\\  \\  = ( \frac{(x + 2)(x + 3)}{(x - 7)(x + 3)})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} ) \\ \\  =  \frac{x^{2}  + 5x + 6}{(x - 7)(x + 3)}  - \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)}  \\ \\  =  \frac{x^{2}  + 5x + 6 - ({x}^{2} + 4x + 13  \: )}{(x - 7)(x + 3)}  \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}   \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}  \\  \\ =  \frac{ x  - 7\: }{(x - 7)(x + 3)} \\  \\ =  \frac{ 1}{(x + 3)}   \\  \\   \purple{ \boxed{\therefore( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) = \frac{ 1}{(x + 3)}}} \\  \\

You might be interested in
Draw a model of square root of 12 using perfect squares
Shkiper50 [21]

Answer:

The answer is "\sqrt{12} is not a perfect square".

Step-by-step explanation:

12 is not a perfect square because it is the natural number, and no other natural number would square the number 12, that's why it is not a perfect square.

If we calculate the square root of \sqrt{12}. so, it is will give 2\sqrt{3} that is not a perfect square root which can be described as follows:

\Rightarrow \sqrt{12}= \sqrt{2\times 2\times 3}

            = \sqrt{2^2\times 3}\\\\= 2\sqrt{3}\\\\

\bold{\sqrt{12}} is not a perfect square root.

7 0
3 years ago
Read 2 more answers
I need help. +brainliest. 25 pts+
Inga [223]

Answer:

i cant help with the first one but the others i think i can

- plastic (insulator) -stainless steel (conductor) -silver (conductor) -wood (insulator)

Also radiation could effect the system but changing the conductivity of some of the materials also change change the way the materials accept heat.  

Sorry about the first one :)

4 0
3 years ago
A windowpane is 28 centimeters by 96 centimeters. What is the distance between opposite corners of the windowpane? ( In cm)
melisa1 [442]

Answer:

100 cm

Step-by-step explanation:

Using the Pythagore theorem :

Imagine that your window is a triangle, and that the distance you search is AC

So you have :

AC² = AB² + BC²

AC² = 28² + 96²

AC² = 784 + 9216

AC² = 10000

AC = √10000

AC = 100

8 0
2 years ago
X2+11x-26=0<br> X2 - 25 = 0
Oksanka [162]
X² + 11x - 26 = 0
x² - 25 = 0

(x + 13)(x - 2) = 0
(x + 5)(x - 5) = 0

x = -13
x = 2
x = -5
x = 5
8 0
2 years ago
The cube shown has side length 0.7 metres.
Vinil7 [7]

Answer:

294cm^2

Step-by-step explanation:

0.7*0.7=0.49

0.49*6=2.94m

294cm^2

4 0
3 years ago
Read 2 more answers
Other questions:
  • Evaluate the function f(x)=x^2+2x+3 at the given values of the independent variable and simplivy
    11·1 answer
  • Feel relax and free to ask me any math related question.​
    12·1 answer
  • A bacteria culture begins with eight bacteria which triple in size every week. how many bacteria exist in the culture after four
    7·1 answer
  • Solve for n.<br> n−10=5−4n <br> Enter your answer in the box.<br><br> n =
    12·1 answer
  • Write the word sentence as an equation. Then solve the equation. A number multiplied by 2/3 is 3/20.
    15·1 answer
  • Functions f(x) and g(x) are shown below:
    5·1 answer
  • Use the vertical line test to determine whether the relation graphed is a function.
    15·1 answer
  • Each square in the grid is a unit square with an area of 1 square unit.
    14·1 answer
  • I have to take care of my sister's cat while she is on vacation. The cat is a very picky eater and will only eat a certain cat f
    8·1 answer
  • I forgot how to do this, can someone help me-
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!