1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
6

(x+2/x-7) - (x^2+4x+13/x^2-4x-21)

Mathematics
2 answers:
olya-2409 [2.1K]3 years ago
7 0

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

allochka39001 [22]3 years ago
6 0

Step-by-step explanation:

( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) \\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 7x  + 3x- 21} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{x( {x}  - 7)  + 3(x- 7)} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} )\\  \\  = ( \frac{(x + 2)(x + 3)}{(x - 7)(x + 3)})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} ) \\ \\  =  \frac{x^{2}  + 5x + 6}{(x - 7)(x + 3)}  - \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)}  \\ \\  =  \frac{x^{2}  + 5x + 6 - ({x}^{2} + 4x + 13  \: )}{(x - 7)(x + 3)}  \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}   \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}  \\  \\ =  \frac{ x  - 7\: }{(x - 7)(x + 3)} \\  \\ =  \frac{ 1}{(x + 3)}   \\  \\   \purple{ \boxed{\therefore( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) = \frac{ 1}{(x + 3)}}} \\  \\

You might be interested in
Georgia needs to buy flea treatment for her dog. Pet Store 1 is offering the flea treatment for 40 percent off plus an additiona
Sphinxa [80]
Offer 1
33−33×0.4
=19.8
19.8−19.8×0.25
=14.85

Offer 2..the best
34−34×0.55
=15.3
15.3−15.3×0.05
=14.535

By How much cheaper

14.85−14.535
=0.315
6 0
3 years ago
Read 2 more answers
Help please? match each system of linear equation with the correct numbers of solutions ​
Ksenya-84 [330]

Answer:

Step-by-step explanation:

First system:  no solution, since the two lines are parallel; they never cross.

Second system:  one solution

Third system:  infinitely many solutions, since the second equation is a multiple of the first

4 0
3 years ago
Find the point of diminishing returns (x comma y )for the function​ R(x), where​ R(x) represents revenue​ (in thousands of​ doll
riadik2000 [5.3K]

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The point of diminishing returns (x , y ) is  (11, 21462)

Step-by-step explanation:

From the question we are told that

     The function is  R(x) =  10,000 -x^3 - 33x^2 + 800x ,  \ \ 0 \le x \le 20

Here R(x)  represents revenue (in thousands of​ dollars) and  x  represents the amount spent on advertising​ (in thousands of​ dollars).

           Now  differentiating  R(x) we have  

               R'(x) =  -3x^2 +66x + 800

Finding the second derivative of R(x)

              R''(x) =  -6x +66

at  inflection point    R''(x) =  0

    So      -6x  +66  = 0

=>           x=  11

    substituting value of x into R(x)

     R(x) =  10,000 -(11)^3 - 33(11)^2 + 800(11) ,

      R(x) = 21462

Now the point of diminishing returns (x , y ) i.e (x , R(x) ) is

     (11, 21462)

4 0
3 years ago
A rectangular soccer field is 120 ft long by 64 ft wide. What dimensions would a scale drawing of the soccer field be if the fie
timofeeve [1]

Answer:

Hence dimension on drawing= 12 in by 6.4 in

Step-by-step explanation:

Actual dimension of the soccer field is 120 ft by 64 ft

Scale during drawing = 1in to 10 ft

Hence dimension on drawing = 120/10 by 64/10 = 12 in by 6.4 in

4 0
3 years ago
You are part of the research group that hypothesized that relative humidity played a role in the transpiration differences. What
aleksandrvk [35]

Answer:

<h2>A) Population A has a high water potential and loss due to transpiration because of the increased humidity.</h2>

Step-by-step explanation:

Notice that the hypothesis is that relative humidity affects the transpiration of the body. So, in order to prove such hypothesis, we need to find enough evidence about water loss due to higher humidity. Knowing the relative humidity as the relation between water vapor and the pressure of it.

Therefore, the right answer is A, because we need to prove that a high water potential and loss due to transpitation happens because of the increased humidity.

6 0
3 years ago
Other questions:
  • A family has two cars. the first car has a fuel efficiency of 25 miles per gallon of gas and the second has a fuel efficiency of
    9·1 answer
  • Expand and simplify (4x+1)(x+3)
    8·2 answers
  • Evaluate this expression: 3x + 9x -5
    11·1 answer
  • Daddy needs to make 16 costumes for the school play.Each costume requires 2 1/4 yards of material. How many yards of material wi
    14·1 answer
  • Henry, Brian and Colin share some sweets in the ratio 4:5:4. Henry gets 56 sweets. How many more sweets does Brian get over Coli
    11·1 answer
  • Please help is this wrong? If it is please explain!
    7·2 answers
  • HELPP ILL MARL YOU BRAINLy!
    13·1 answer
  • Thandi received 15% discount on a dress that costs R1500. How much did she<br>pay?​
    5·1 answer
  • EASY NEED HELP ASAP<br><br> What is the perimeter of the inside of the track?
    15·2 answers
  • What’s the answer!?!???
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!