1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
6

(x+2/x-7) - (x^2+4x+13/x^2-4x-21)

Mathematics
2 answers:
olya-2409 [2.1K]3 years ago
7 0

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

allochka39001 [22]3 years ago
6 0

Step-by-step explanation:

( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) \\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 7x  + 3x- 21} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{x( {x}  - 7)  + 3(x- 7)} )\\  \\  = ( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} )\\  \\  = ( \frac{(x + 2)(x + 3)}{(x - 7)(x + 3)})  - ( \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)} ) \\ \\  =  \frac{x^{2}  + 5x + 6}{(x - 7)(x + 3)}  - \frac{ {x}^{2} + 4x + 13 }{( {x}  - 7) (x + 3)}  \\ \\  =  \frac{x^{2}  + 5x + 6 - ({x}^{2} + 4x + 13  \: )}{(x - 7)(x + 3)}  \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}   \\  \\ =  \frac{x^{2}  + 5x + 6 - {x}^{2}  -  4x  - 13  \: }{(x - 7)(x + 3)}  \\  \\ =  \frac{ x  - 7\: }{(x - 7)(x + 3)} \\  \\ =  \frac{ 1}{(x + 3)}   \\  \\   \purple{ \boxed{\therefore( \frac{x + 2}{x - 7})  - ( \frac{ {x}^{2} + 4x + 13 }{ {x}^{2}  - 4x - 21} ) = \frac{ 1}{(x + 3)}}} \\  \\

You might be interested in
tìm tất cả giá trị thực của tham số m để đồ thị hàm số y=x³-mx²+4 cắt trục hoành tại ba điểm phân biệt
Elina [12.6K]

Answer:

실례합니다?

Step-by-step explanation:

질문이 뭔가요??? 이해가 안가요? 어느 언어?

6 0
3 years ago
The sum of the BLANK of the plane figure is called the perimeter
elixir [45]

Answer:

sides

Step-by-step explanation:

The perimeter is equal to the sides of the plane figure all added together.

6 0
4 years ago
What property is represented
VARVARA [1.3K]
9 × (5 × 2) = (9 × 5) × 2

You can see that all the numbers are there and in the same order. The only thing that changed is the parentheses location.

This is called the Associative Property (of Multiplication, because you're multiplying).
3 0
4 years ago
Read 2 more answers
The product of 13 and the sum of a number an 15​
FrozenT [24]

Answer:

(15+x) · 13

Step-by-step explanation:

plz mark brainliest!

7 0
4 years ago
An obtuse angle in the figure is_____
Vesna [10]

The obtuse angel is ∠AOC. This is obtuse because it is larger then 90 degrees

Hope this helped!

~Just a girl in love with Shawn Mendes

4 0
4 years ago
Read 2 more answers
Other questions:
  • Find the volume of a right circular cone that has a height of 3.5 ft and a base with a radius of 18.9 ft. Round your answer to t
    9·2 answers
  • Which line has a slope of 2?
    7·1 answer
  • Bean plants grow rapidly. A bean plant is 16 inches tall. Tomorrow it will be 24 inches tall, the next day it will be 32 inches
    8·1 answer
  • Find the midpoint and distance of the line segment with the given endpoints.
    7·1 answer
  • Allan and Dave bowl together and their combined total score for one game was 375 points. Allan’s score was 60 less than twice Da
    12·2 answers
  • Sam's total expenses last month were $1840. What was his total variable cost for last
    8·1 answer
  • I just need help with #4
    15·2 answers
  • Tom ran 4 times around a circular track of diameter 28m what distance did he cover​
    12·1 answer
  • How many solutions does x2 - 2x + 9 = 0 have and what type are they? Do NOT find the
    6·1 answer
  • What is the slope and y- intercept in the equation y=4x+6?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!