Blank 1: nothing (to keep 2 total nitrogen)
blank 2: 3 (to make 6 total hydrogen)
blank 3: 2 (to make 2 total nitrogen and 6 total hydrogen)
hope this helps!! :)
Answer: Absolute dating is used to determine a precise age of a rock or fossil through radiometric dating methods. This uses radioactive minerals that occur in rocks and fossils almost like a geological clock. ... These isotopes break down at a constant rate over time through radioactive decay.
1. NaF, Na₂S, Na₃P, Na₂O
2. MgF₂, MgS, Mg₃P₂, MgO
3. AlF₃, Al₂S₃, AlP, Al₂O₃
<h3>Further explanation</h3>
Given
Ionic charge
Required
The formula of binary ionic compounds
Solution
Ionic compounds consisting of cations (ions +) and anions (ions -)
Ionic compounds usually consist of metal cations and non-metal anions
Metal: cation, positively charged.
Nonmetal: negatively charged
The anion cation's charge is crossed
The ionic compounds :
1. NaF, Na₂S, Na₃P, Na₂O
2. MgF₂, MgS, Mg₃P₂, MgO
3. AlF₃, Al₂S₃, AlP, Al₂O₃
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
It is given that the person weighs 62 kg = 62,000 g
Natural abundances in mass percent are:
O = 65%
C = 18%
H = 10%
N = 3.0%
Ca = 1.6%
P = 1.2%
Corresponding weights of the elements are:
O = 65/100 * 62000 g = 40.30 * 10^3 g
C = 18/100 * 62000 g = 11.16 * 10^3 g
H = 10/100 * 62000 g = 62.00 * 10^2 g
N = 3.0/100 * 62000 g = 18.60 * 10^2 g
Ca = 1.6/100 * 62000 g = 9.92 * 10^2 g
P = 1.2/100 * 62000 g = 7.44 * 10^2 g