Moles of Cl2 = 2.65 x 10^24 / 6.02 x 10^23 = 4.4 moles.
Mass of Cl2 in grams = molar mass of Cl2 x moles of Cl2
= 70.906 x 4.4
= 311.98 grams.
Hope this helps!
Answer:
1 mol of copper
Explanation:
The mass of the oxide formed is the total mass less the crucible mass, so it is:
100.52 - 88.00 = 12.52 g
It means that 10.00 g is from copper, and 2.52 g is from oxygen. The molar mass of copper is 63.50 g/mol, and the molar mass of oxygen is 16 g/mol. The number of moles (n) is the mass divided by the molar mass:
n Cu = 10.00/63.50 = 0.158 moles
n O = 2.52/16 = 0.158 moles
So, there is the same number of moles of each element, and the product must be: CuO, which has 1 mol of copper.
A beaker and a microscope
Answer:
Q = 270 Joules (2 sig. figs. as based on temperature change.)
Explanation:
Heat Transfer Equation of pure condensed phase substance => Q = mcΔT
Mixed phase (s ⇄ l melting/freezing, or l ⇄ g boiling/condensation) heat transfer equation => Q = m∙ΔHₓ; ΔHₓ = phase transition constant
Since this is a pure condensed phase (or, single phase) form of lead (Pb°(s)) and not melting/freezing or boiling/condensation, one should use
Q = m·c·ΔT
m = mass of lead = 35.0g
c = specific heat of lead = 0.16J/g°C
ΔT = Temp change = 74°C - 25°C = 49°C
Q = (35.0g)(0.16J/g·°C )(49°C) = 274.4 Joules ≅ 270 Joules (2 sig. figs. as based on temperature change.)