Answer: The concentrations of A , B , and C at equilibrium are 0.1583 M, 0.2583 M, and 0.1417 M.
Explanation:
The reaction equation is as follows.

Initial : 0.3 0.4 0
Change: -x -x x
Equilbm: (0.3 - x) (0.4 - x) x
We know that, relation between standard free energy and equilibrium constant is as follows.

Putting the given values into the above formula as follows.


x = 0.1417
Hence, at equilibrium
= 0.1583 M
= 0.2583 M
1) Answer is: c) The reaction will proceed right.
Balanced chemical reaction: N₂(g) + 3H₂(g) ⇄ 2NH₃(g) ΔH = +92 kJ.
Reducing the volume of the system increase the partial pressures of the products and reactants.
With a pressure increase due to a decrease in volume, the side of the equilibrium with fewer moles is more favorable, there are 4 moles at the left side (three moles of hydrogen and one mole of nitrogen) and 2 moles (ammonia) at the right side of the reaction.
2) Answer is: d) The partial pressure of ammonia will increase.
This reaction is endothermic (enthalpy is higher than zero), which means that heat is added.
According to Le Chatelier's principle when the reaction is endothermic heat is included as a reactant and when the temperature increased, the heat of the system increase, so the system consume some of that heat by shifting the equilibrium to the right, producing more ammonia.
If iron (Fe) gained a proton it would become cobalt (CO).
Due to it's electronic configuration w/c is 1s2 2s2 2ps 3s1 considering the last w/c is 3s1, sodium should be in row 3 period a1.
Answer:
<h3>The answer is 1000 g</h3>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of object = 50 mL
density = 20 g/mL
We have
mass = 20 × 50
We have the final answer as
<h3>1000 g</h3>
Hope this helps you