The concentration of [H3O+] will be 6.3 x
M
<h3>pH</h3>
Mathematically, pH = -log [H+] or -log [H3O+]
With a pH of 13.2:
-log [H3O+] = 13.2
log [H3O+] = -13.2
[H3O+] = 6.3 x
M
More on pH can be found here: brainly.com/question/491373
#SPJ1
Answer:
There are 4 tryptophans in the protein.
Explanation:
According to question, protein contains one tyrosine residue and say x number of tryptophans.
Concentration of protein solution = 1.0 micromolar = 
Molar absorptivity of a protein solution : 


Length of the cuvette = l = 1.0 cm
Absorbance of protein solution at 280 nm = A = 0.024
( Beer-Lambert's law)

Solving for x :
x = 4
There are 4 tryptophans in the protein.
Answer:
large supply of nutrients.
Explanation:
In a wetland, the soil is covered by water or is almost covered by water. This water may be coming upwards from an underground aquifer. Wetlands are covered by water for most of the year.
They are sheltered waters and do provide habitats for many living things.
Nutrients such as; Carbon sulfur, phosphorus, carbon, and nitrogen are cycled within the soil of wetlands hence wetlands have a large supply of nutrients.
Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol.
Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than 2-methylpropane.