Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
Answer:
A lunar eclipse can only happen during a full moon.
Hope I helped :)
Explanation:
Correct answer: has a completely filled outermost shell
Atoms of the element with complete outermost shells are stable. So, in order to attain stability the atom either loses electrons or gains electrons to completely fill the outermost shell. The stable electronic configuration for the s and p-block elements is exhibited by the noble gases or the group 8 elements. All the unstable atoms try to attain the electronic configuration of the nearest noble gas with completely filled outermost shell.
The velocity would be 0.5 i think
Answer:
Pure Water
Explanation:
The common ion effect describes the effect on equilibrium that occurs when a common ion (an ion that is already contained in the solution) is added to a solution. The common ion effect generally decreases solubility of a solute(Khan Academy).
NaCl, AgNO3, KCl, BaCl2 solutions all have a common ion with AgCl. As a result of this, AgCl will be much less soluble in these solvents than it is in pure water.
Therefore, AgCl will have the highest solubility in pure water compared to all the solutions listed above.