Answer:
1.346 v
Explanation:
1) Fist of all we need to calculate the standard cell potential, one should look up the reduction potentials for the species envolved:
(oxidation)
→
E°=0.337 v
(reduction)
→
E°=1.679 v
(overall)
+8H^{+}_{(aq)}→
E°=1.342 v
2) Nernst Equation
Knowing the standard potential, one calculates the nonstandard potential using the Nernst Equation:
Where 'R' is the molar gas constant, 'T' is the kelvin temperature, 'n' is the number of electrons involved in the reaction and 'F' is the faraday constant.
The problem gives the [red]=0.66M and [ox]=1.69M, just apply to the Nernst Equation to give
E=1.346
Answer:

Explanation:
Hello there!
In this case, for these problems about collecting a gas over water, we must keep in mind that once the gas has been collected, the total pressure of the system is given by the atmospheric pressure, in this case 1.01 atm. Next, since we also have water in the mixture, we can write the following equation:

Thus, by solving for the pressure of nitrogen and using consistent units, we obtain:

Answer: A. the rotational period of the earth is the same as that of the moon
The Avogadro number represents the number of units in one mole of a chemical substance.
So to find the mole number of a chemical element, you divide its atom number of the Avogadro number which Na = 6.02*10^23 approx.
So n=N/Na (n=mole number, N=number of atoms, Na=Avogadro number)
n=1.0*10^15/6.02*10^23
n=1.6 * 10^-9
So 1.0*10^15 atoms of Sodium represent 1.6*10^-9 mol.
Hope this Helps! :)