Answer:
2.222 that is the answer i think might want to ask
Answer:
Explanation:
1)<u><em> Ionization equilibrium equation: given</em></u>
- H₂O(l) + H₂O(l) ⇌ H₃O⁺(aq) + OH⁻(aq)
2) <em><u>Ionization equilibrium constant, at 25°C, Kw: given</u></em>
<u>3) Stoichiometric mole ratio:</u>
As from the ionization equilibrium equation, as from the fact it is stated, the concentration of both ions, at 25°C, are equal:
- [H₃O⁺(aq)] = [OH⁻(aq)] = 1.0 × 10⁻⁷ M
- ⇒ Kw = [H3O⁺] [OH⁻] = 1.0 × 10⁻⁷ × 1.0 × 10⁻⁷ = 1.0 × 10⁻¹⁴ M
<u><em>4) A solution has a [OH⁻] = 3.4 × 10⁻⁵ M at 25 °C </em></u><em><u>and you need to calculate what the [H₃O⁺(aq)] is.</u></em>
Since the temperature is 25°, yet the value of Kw is the same, andy you can use these conditions:
Then you can substitute the known values and solve for the unknown:
- 1.0 × 10⁻¹⁴ M² = [H₃O⁺] × 3.4 × 10⁻⁵ M
- ⇒ [H₃O⁺] = 1.0 × 10⁻¹⁴ M² / ( 3.4 × 10⁻⁵ M ) = 2.9⁻¹⁰ M
As you see, the increase in the molar concentration of the ion [OH⁻] has caused the decrease in the molar concentration of the ion [H₃O⁺], to keep the equilibrium law valid.
Answer:
Opcion D
Explanation:
Una desintegración beta es de a forma:
0

-1
You can find this in opcion D
I hope I will help you : )
<span>the behavior of the above pair of substances</span> is soluble
Answer:
1.
2.
Explanation:
1.Momentum is given as the product of mass by velocity of an object.
Momentum,
m=1,500kh, v=6m/s

2.Momentum,
m=7800kg, v=30m/s

new mass=7800+800=8600
As mass is increased, so does the resultant velocity as mass is directly proportional to velocity.
