Answer:
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year
Explanation:
Given that the mass of the carbon 14 at the start = 5 gram
At the end of 5,000 years we will have;

Where
A = The amount of carbon 14 left
A₀ = The starting amount of carbon 14
e = Constant = 2.71828
= The half life

t = The time elapsed = 5000 years
λ = 0.693/
= 0.693/5730 = 0.0001209424
Therefore;
A = 5 × e^(-0.0001209424×5000) = 2.7312 grams
Therefore, the amount of carbon 14 decayed in the 5000 years is the difference in mass between the starting amount and the amount left
The amount of carbon 14 decayed = 5 - 2.7312 = 2.2688 grams
The average yearly rate of change of carbon-14 during the first 5000 years is therefore;
2.2688 grams/(5000 years) = 0.0004538 grams per year
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year.
Oxygen hydrogen helium argon xenon krypton
neon nitrogen radon chlorine bromine fluorine
Answer:
get a little more than that is a great deal for the company and inventor of a company how can we get u a great job with their best friend in a few months but il will send you i will be the only person I know of fishes and the best I have to ask me to make it to my own home wifi and I am grade up to the same thing and the same way of the American people I have a lot to make a simple one person
Answer:
30 μmol/L
Explanation:
<em>A chemist prepares a solution of barium chloride by measuring out 8.9 μmol of barium chloride into a 300mL volumetric flask and filling the flask to the mark with water.
</em>
<em>
Calculate the concentration in μmol L of the chemist's barium chloride solution. Round your answer to 2 significant digits.</em>
<em />
The chemist has 8.9 μmol of solute (barium chloride) and he adds water until the mark of 300 mL in the container, which is the volume of the solution. We will need the conversion factor 1 L = 1000 mL. The concentration of barium chloride in μmol/L is:

The answer is (2) 2, because a total of 6 electrons is transferred. We can know the electron transferred number form Mg to Mg2+ ion. There is 3 Mg involved and two electrons per atom. So total is 6,