Animals can be classified into two main groups:vertebrates and invertebrates<span>. The main difference between </span>vertebrates and invertebrates<span> is that</span>invertebrates<span>, like insects and flatworms, </span>do<span> not</span>have<span> a backbone or a spinal column. Examples of</span>vertebrates<span> include humans, birds, and snakes. hope this helped</span>
Decrease breathing rate hope it helps
Answer:
I'm pretty sure it's the mouse
Explanation:
Because it is eating the insects but also gets eaten by the snake.
Answer:
This question is incomplete; the complete part is:
Which of the following best explains the reactions of these enzymes?
A) Amylase aids in the removal of a water molecule to break covalent bonds whereas glycogen synthase aids in the addition of a water molecule to form covalent bonds.
B) Amylase aids in the addition of a water molecule to break covalent bonds whereas glycogen synthase aids in the removal of a water molecule to form covalent bonds.
C) Amylase aids in the addition of a water molecule to form covalent bonds whereas glycogen synthase aids in the removal of a water molecule to break covalent bonds.
D) Amylase aids in the removal of a water molecule to form covalent bonds whereas glycogen synthase aids in the addition of a water molecule to break covalent bonds.
The answer is A
Explanation:
In nature, MONOMERS are simpler units that come together to form larger units called POLYMERS. According to this question, Amylase converts carbohydrate polymers to monomers while Glycogen synthase converts carbohydrate monomers to polymers.
Monomers of carbohydrate are joined together by adding water molecule to form covalent bonds between the monomer units, hence, forming a POLYMER. This is how Glycogen synthase catalyzes its reaction of forming carbohydrate polymer (glycogen).
On the other hand, Amylase breaks down large polymer molecules into monomers by removing water molecules in a process called HYDROLYSIS. This breaks the covalent bond that holds the monomeric units together.