Answer:
Measurement is a comparison of an unknown quantity with a known fixed quantity of the same kind. The value obtained on measuring a quantity is called its magnitude. The magnitude of a quantity is expressed as numbers in its unit.
To develop this problem it is necessary to apply the concepts performed to the absolute pressure based on the reference pressure (atmospheric) and the pressure that is generated due to the height of the column of the measured liquid.
In mathematical terms the previous concept can be expressed as

Where
Atmospheric Pressure
Density
g = Gravitational acceleration
h = Height
Our values are given as

g = 9.8m/s


Replacing we have then that



Therefore the absolute pressure in the test section is 99.9019kPa
Hello There!
It is A. Units only.
Hope This Helps You!
Good Luck :)
- Hannah ❤
Answer:
V = 3.6 volts
Explanation:
From Ohm's Law, we know that:
V = IR
but,
R = ρL/A
Therefore,
V = IρL/A
where,
V = Potential Difference = ?
I = Current = 4 A
ρ = resistivity of copper = 1.68 x 10⁻⁸ Ω.m
L = Length = 70 m
A = Cross-sectional Area = πd²/4 = π(1.29 x 10⁻³ m)²/4 [16 gauge wire has a diameter of 1.29 mm]
A = 1.31 x 10⁻⁶ m²
V = (4 A)(1.68 x 10⁻⁸ Ω.m)(70 m)/(1.31 x 10⁻⁶ m²)
<u>V = 3.6 volts</u>
Velocity = displacement / time
Displacement = 2.3 km
Time = 5.78 mins
Velocity = 2.3/5.78
Velocity = 0.398 to the nearest 3 significant figures