Its velocity would be constant
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
Consider velocity to the right as positive.
First mass:
m₁ = 4.0 kg
v₁ = 2.0 m/s to the right
Second mass:
m₂ = 8.0 kg
v₂ = -3.0 m/s to the left
Total momentum of the system is
P = m₁v₁ + m₂v₂
= 4*2 + 8*(-3)
= -16 (kg-m)/s
Let v (m/s) be the velocity of the center of mass of the 2-block system.
Because momentum of the system is preserved, therefore
(m₁+m₂)v= -16
(4+8 kg)*(v m/s) = -16 (kg-m)/s
v = -1.333 m/s
Answer:
The center of mass is moving at 1.33 m/s to the left.
Formulae for Kinetic energy is:
Kinetic Energy= 1/2xmassx(velocity)^2
For comparison we need to have same units,thus we convert 10g into Kg.
10g/1000=0.01Kg
Input the value of bullet in the formulae;
Kinetic Energy= 1/2x0.01kgx(400)^2
K.E=800J
Input value of the ball:
Kinetic Energy=1/2x80kgx(6.5)^2
K.E=1690J
Which means that th Energy of the ball is more than the bullet.