1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sauron [17]
3 years ago
5

In the given arrangement, the normal force applied by block on the ground is​

Physics
1 answer:
barxatty [35]3 years ago
7 0

Answer:

The normal force applied by block on the ground is​ (mg - F cosФ)

Explanation:

<em>Lets explain how to solve the problem</em>

At first you must distribute the force F into two components

<em>Vertical</em> component which is <em>F cosФ</em>

<em>Horizontal</em> component which is <em>F sinФ</em>

The block is in equilibrium, that means sum of forces acting on the

block is zero

So the upward forces equal the downward forces

Normal reaction force R applied by block on the ground and the

vertical component of F both are upward forces

The weight of the block is downward force

The normal reaction force R plus the vertical component of F is

equal to the weight

<em>R + F cosФ = W</em>

W = mg, where g is acceleration of gravity and m is the mass of

the block

<em>R + F cosФ = mg</em>

Subtract F cosФ from both sides

<em>R = mg - F cosФ</em>

<em></em>

The normal force applied by block on the ground is​ (mg - F cosФ)

You might be interested in
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
If a topographic map included a 6,000 ft. mountain next to an area of low hills, which would best describe the contour lines on
VMariaS [17]
The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
8 0
3 years ago
Read 2 more answers
Plans used for work that has to do with construction in or around earth are called
attashe74 [19]
Plans used for work that has to do with construction in or around Earth are called, “Civil Plans.”

Hope this helped!

7 0
3 years ago
Explain why the atomic mass of an element is weighted average mass
madreJ [45]

Explanation:

The mass written on the periodic table is an average atomic mass taken from all known isotopes of an element. This average is a weighted average, meaning the isotope's relative abundance changes its impact on the final average. The reason this is done is because there is no set mass for an element.

3 0
2 years ago
Solar System Model Comparison and Contrast Chart
kotykmax [81]
What are you trying to here?
8 0
3 years ago
Other questions:
  • A fish appears to be 2.00 m below the surface of a pond (nwater = 1.33) when viewed almost directly above by a fisherman. What i
    7·2 answers
  • The potential difference between two points, A and B, in an electric field is 2.00 volts. The energy required to move a charge o
    5·1 answer
  • Why there is no inductive reactance in dc circuits
    8·1 answer
  • Can two negatively charged balloons move apart without ever touching why or why not
    14·2 answers
  • Multiple Response: Newton's second law (select 3)
    15·2 answers
  • a red kangaroo can hop at speeds of 65 km/hr. how much time will it take the kangaroo to hop 0.25 km at that speed?
    10·1 answer
  • Create a multimedia presentation about your favorite element.
    12·2 answers
  • Si un astronauta tiene una masa de 72kg si el valor de g en la luna es 1.6m/s2, ¿cual es la fuerza gravitacionar de la luna sobr
    7·1 answer
  • Question 45 points)<br> Which is an appropriate way to avoid heat related illness when exercising?
    11·2 answers
  • An airplane accelerates from a velocity of 22 m/s to 40 m/s with an acceleration of 2 m/s2. How long does it
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!