Answer:
Party, Birthday, Weddings, Nightclub, Just for fun
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg ()
Speed of Jeremy is 3 m/s ()
Speed of Jeremy after collision is () -2.5 m/s
Mass of Hans is 140 kg ()
Speed of Hans is -2 m/s ()
Speed of Hans after collision is ()
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
=
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
=
= 120 × (-2.5) + 140 ×
= -300 + 140 ×
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 ×
80 + 300 = 140 ×
380 = 140 ×
380/140=
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
wavelength of the EM wave produced by your iclicker is 0.33 m.
<h3>What makes an EM wave?</h3>
- When an electric field (illustrated in red arrows) combines with a magnetic field, electromagnetic waves are generated (which is shown in blue arrows). An electromagnetic wave's magnetic and electric fields are perpendicular to each other and to the wave's direction.
- A changing magnetic field causes a changing electric field, and vice versa—the two are inextricably related. Electromagnetic waves are created by changing fields. Electromagnetic waves, unlike mechanical waves, do not require a medium to propagate.
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m = 0.333 m
To learn more about electromagnetic waves refer,
brainly.com/question/25847009
#SPJ1
<span>internet tension = mass * acceleration internet tension = 23 – Friction tension = 14 * acceleration Friction tension = µ * 14 * 9.8 = µ * 137.2 23 – µ * 137.2 = 14 * acceleration Distance = undemanding speed * time undemanding speed = ½ * (preliminary speed + very final speed) Distance = ½ * (preliminary speed + very final speed) * time Distance = 8.a million m, preliminary speed = 0 m/s, very final speed = a million.8 m/s 8.a million = ½ * (0 + a million.8) * t Time = 8.a million ÷ 0.9 = 9 seconds Acceleration = (very final speed – preliminary speed) ÷ time Acceleration = (a million.8 – 0) ÷ 9 = 0.2 m/s^2 23 – µ * 137.2 = 14 * 0.2 resolve for µ</span>
Answer:
A.B = -38
Explanation:
A = 2i + 9j and B = -i - 4j.
So, A.B = (2i + 9j).(-i - 4j)
= 2i.(-i) + 2i.(-4j) + 9j.(-i) + 9j.(-4j)
= -2i.i - 8i.j - 9j.i - 36j.j
since i.i = 1, j.j = 1, i.j = 0 and j.i = 0, we have
A.B = -2(1) - 8(0) - 9(0) - 36(1)
A.B = -2 - 0 - 0 - 36
A.B = -38