1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
15

Meg skateboards 23 of a mile in 49 of an hour. At this rate, how far will she skateboard in an hour?

Mathematics
2 answers:
kipiarov [429]3 years ago
8 0

Answer:

Im confused with the question you asking

Step-by-step explanation:

icang [17]3 years ago
4 0
Your answer is 1.2 because u have to add then divide
You might be interested in
Is my answer right?? if not which one is it?? BRAINLIEST IF UR CORRECT!
lorasvet [3.4K]

Answer:

Step-by-step explanation:

1 yes

2 yes

3 yes

4 yes

6 0
3 years ago
Make this into one equation please
Zanzabum

Answer:

5x-5x+8=2

Step-by-step explanation:

substitute y with -5+8

3 0
2 years ago
I’ll give points and brainalist for a correct answer / explanation
wlad13 [49]

Answer:

Answer is C

r= 3

there are 4 circles.

total area of circle = 4 π 3²

so shaded area = 12²- 4π3²= 30.90

Step-by-step explanation:

3 0
3 years ago
What’s is the gcf 33c,55cd
Juli2301 [7.4K]
The GCF of 33c and 55cd is

33c/11c = 3
55cd/11c = 5d

the greatest common factor is 11c 

hope this helps
4 0
3 years ago
Apply the method of undetermined coefficients to find a particular solution to the following system.wing system.
jarptica [38.1K]
  • y''-y'+y=\sin x

The corresponding homogeneous ODE has characteristic equation r^2-r+1=0 with roots at r=\dfrac{1\pm\sqrt3}2, thus admitting the characteristic solution

y_c=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x

For the particular solution, assume one of the form

y_p=a\sin x+b\cos x

{y_p}'=a\cos x-b\sin x

{y_p}''=-a\sin x-b\cos x

Substituting into the ODE gives

(-a\sin x-b\cos x)-(a\cos x-b\sin x)+(a\sin x+b\cos x)=\sin x

-b\cos x+a\sin x=\sin x

\implies a=1,b=0

Then the general solution to this ODE is

\boxed{y(x)=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x+\sin x}

  • y''-3y'+2y=e^x\sin x

\implies r^2-3r+2=(r-1)(r-2)=0\implies r=1,r=2

\implies y_c=C_1e^x+C_2e^{2x}

Assume a solution of the form

y_p=e^x(a\sin x+b\cos x)

{y_p}'=e^x((a+b)\cos x+(a-b)\sin x)

{y_p}''=2e^x(a\cos x-b\sin x)

Substituting into the ODE gives

2e^x(a\cos x-b\sin x)-3e^x((a+b)\cos x+(a-b)\sin x)+2e^x(a\sin x+b\cos x)=e^x\sin x

-e^x((a+b)\cos x+(a-b)\sin x)=e^x\sin x

\implies\begin{cases}-a-b=0\\-a+b=1\end{cases}\implies a=-\dfrac12,b=\dfrac12

so the solution is

\boxed{y(x)=C_1e^x+C_2e^{2x}-\dfrac{e^x}2(\sin x-\cos x)}

  • y''+y=x\cos(2x)

r^2+1=0\implies r=\pm i

\implies y_c=C_1\cos x+C_2\sin x

Assume a solution of the form

y_p=(ax+b)\cos(2x)+(cx+d)\sin(2x)

{y_p}''=-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x)

Substituting into the ODE gives

(-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x))+((ax+b)\cos(2x)+(cx+d)\sin(2x))=x\cos(2x)

-(3ax+3b-4c)\cos(2x)-(3cx+3d+4a)\sin(2x)=x\cos(2x)

\implies\begin{cases}-3a=1\\-3b+4c=0\\-3c=0\\-4a-3d=0\end{cases}\implies a=-\dfrac13,b=c=0,d=\dfrac49

so the solution is

\boxed{y(x)=C_1\cos x+C_2\sin x-\dfrac13x\cos(2x)+\dfrac49\sin(2x)}

7 0
3 years ago
Other questions:
  • Which is the best estimate of -14 1/9 × -2 9/10 ​
    11·2 answers
  • Help me find the slope of the line containing these paired points:
    6·1 answer
  • Find the volume of the cylinder.
    13·2 answers
  • Plz help!!!!!!!!!!!!
    10·2 answers
  • Find the mean and median for this set of number: 80, 70, 60, 40, 80.
    9·2 answers
  • You purchase fresh strawberries in Mexico for 28 pesos per kilogram. What is the price in U.S. dollars per pound?
    13·2 answers
  • Which is the decimal expression 7/22
    9·2 answers
  • (-2,3) and slope m=9
    14·1 answer
  • Mary has read 75% of her 200 page book. How many pages has she read?
    11·1 answer
  • Solve for q.<br><br> q + 7 = 61<br><br> q = ____
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!