Answer:
#_photon = 5 10²⁰ photons / s
Explanation:
For this exercise let's calculate the energy of a single quantum of energy, use Planck's law
E = h f
c= λ f
E = h c / λ
λ= 1000 nm (1 m / 109 nm) = 1000 10⁻⁹ m
Let's calculate
E₀ = 6.6310⁻³⁴ 3 10⁸/1000 10⁻⁹
E₀ = 19.89 10⁻²⁰ J
This is the energy emitted by a photon let's use a proportions rule to find the number emitted in P = 100 w
#_photon = P / E₀
#_photon = 100 / 19.89 10⁻²⁰
#_photon = 5 10²⁰ photons / s
Answer:
The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.
The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)
Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
Explanation:
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

There won't be another period where many brilliant discoveries are made in such a span of time because of the high degree of advancement already.
<h3>What is Technology?</h3>
Tgis is defined as the application of scientific knowledge for practical purposes.
We have advanced technological advancement which is why there won't be many discoveries in such time span.
Read more about Technology hee brainly.com/question/7788080